mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-07 01:38:26 +00:00
Revert "[FastISel][X86] Remove no longer needed functions."
Revert "[FastISel][X86] Implement the FastLowerIntrinsicCall hook." Revert "[FastISel][X86] Implement the FastLowerCall hook." This reverts commit r213035, r213036, and r213037 to make the buildbots happy again. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213048 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f32aa7addc
commit
a107ebd54d
@ -74,8 +74,6 @@ public:
|
||||
const LoadInst *LI) override;
|
||||
|
||||
bool FastLowerArguments() override;
|
||||
bool FastLowerCall(CallLoweringInfo &CLI) override;
|
||||
bool FastLowerIntrinsicCall(const IntrinsicInst *II) override;
|
||||
|
||||
#include "X86GenFastISel.inc"
|
||||
|
||||
@ -126,6 +124,11 @@ private:
|
||||
bool X86SelectFPExt(const Instruction *I);
|
||||
bool X86SelectFPTrunc(const Instruction *I);
|
||||
|
||||
bool X86VisitIntrinsicCall(const IntrinsicInst &I);
|
||||
bool X86SelectCall(const Instruction *I);
|
||||
|
||||
bool DoSelectCall(const Instruction *I, const char *MemIntName);
|
||||
|
||||
const X86InstrInfo *getInstrInfo() const {
|
||||
return getTargetMachine()->getInstrInfo();
|
||||
}
|
||||
@ -2163,8 +2166,8 @@ bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool isCommutativeIntrinsic(IntrinsicInst const *II) {
|
||||
switch (II->getIntrinsicID()) {
|
||||
static bool isCommutativeIntrinsic(IntrinsicInst const &I) {
|
||||
switch (I.getIntrinsicID()) {
|
||||
case Intrinsic::sadd_with_overflow:
|
||||
case Intrinsic::uadd_with_overflow:
|
||||
case Intrinsic::smul_with_overflow:
|
||||
@ -2175,12 +2178,12 @@ static bool isCommutativeIntrinsic(IntrinsicInst const *II) {
|
||||
}
|
||||
}
|
||||
|
||||
bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
|
||||
// FIXME: Handle more intrinsics.
|
||||
switch (II->getIntrinsicID()) {
|
||||
switch (I.getIntrinsicID()) {
|
||||
default: return false;
|
||||
case Intrinsic::frameaddress: {
|
||||
Type *RetTy = II->getCalledFunction()->getReturnType();
|
||||
Type *RetTy = I.getCalledFunction()->getReturnType();
|
||||
|
||||
MVT VT;
|
||||
if (!isTypeLegal(RetTy, VT))
|
||||
@ -2220,7 +2223,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
// movq (%rax), %rax
|
||||
// ...
|
||||
unsigned DestReg;
|
||||
unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
|
||||
unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
|
||||
while (Depth--) {
|
||||
DestReg = createResultReg(RC);
|
||||
addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
@ -2228,23 +2231,23 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
SrcReg = DestReg;
|
||||
}
|
||||
|
||||
UpdateValueMap(II, SrcReg);
|
||||
UpdateValueMap(&I, SrcReg);
|
||||
return true;
|
||||
}
|
||||
case Intrinsic::memcpy: {
|
||||
const MemCpyInst *MCI = cast<MemCpyInst>(II);
|
||||
const MemCpyInst &MCI = cast<MemCpyInst>(I);
|
||||
// Don't handle volatile or variable length memcpys.
|
||||
if (MCI->isVolatile())
|
||||
if (MCI.isVolatile())
|
||||
return false;
|
||||
|
||||
if (isa<ConstantInt>(MCI->getLength())) {
|
||||
if (isa<ConstantInt>(MCI.getLength())) {
|
||||
// Small memcpy's are common enough that we want to do them
|
||||
// without a call if possible.
|
||||
uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
|
||||
uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
|
||||
if (IsMemcpySmall(Len)) {
|
||||
X86AddressMode DestAM, SrcAM;
|
||||
if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
|
||||
!X86SelectAddress(MCI->getRawSource(), SrcAM))
|
||||
if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
|
||||
!X86SelectAddress(MCI.getRawSource(), SrcAM))
|
||||
return false;
|
||||
TryEmitSmallMemcpy(DestAM, SrcAM, Len);
|
||||
return true;
|
||||
@ -2252,35 +2255,35 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
}
|
||||
|
||||
unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
|
||||
if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
|
||||
if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
|
||||
return false;
|
||||
|
||||
if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
|
||||
if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
|
||||
return false;
|
||||
|
||||
return LowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
|
||||
return DoSelectCall(&I, "memcpy");
|
||||
}
|
||||
case Intrinsic::memset: {
|
||||
const MemSetInst *MSI = cast<MemSetInst>(II);
|
||||
const MemSetInst &MSI = cast<MemSetInst>(I);
|
||||
|
||||
if (MSI->isVolatile())
|
||||
if (MSI.isVolatile())
|
||||
return false;
|
||||
|
||||
unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
|
||||
if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
|
||||
if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
|
||||
return false;
|
||||
|
||||
if (MSI->getDestAddressSpace() > 255)
|
||||
if (MSI.getDestAddressSpace() > 255)
|
||||
return false;
|
||||
|
||||
return LowerCallTo(II, "memset", II->getNumArgOperands() - 2);
|
||||
return DoSelectCall(&I, "memset");
|
||||
}
|
||||
case Intrinsic::stackprotector: {
|
||||
// Emit code to store the stack guard onto the stack.
|
||||
EVT PtrTy = TLI.getPointerTy();
|
||||
|
||||
const Value *Op1 = II->getArgOperand(0); // The guard's value.
|
||||
const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
|
||||
const Value *Op1 = I.getArgOperand(0); // The guard's value.
|
||||
const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
|
||||
|
||||
MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
|
||||
|
||||
@ -2291,7 +2294,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
return true;
|
||||
}
|
||||
case Intrinsic::dbg_declare: {
|
||||
const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
|
||||
const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
|
||||
X86AddressMode AM;
|
||||
assert(DI->getAddress() && "Null address should be checked earlier!");
|
||||
if (!X86SelectAddress(DI->getAddress(), AM))
|
||||
@ -2311,7 +2314,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
if (!Subtarget->hasSSE1())
|
||||
return false;
|
||||
|
||||
Type *RetTy = II->getCalledFunction()->getReturnType();
|
||||
Type *RetTy = I.getCalledFunction()->getReturnType();
|
||||
|
||||
MVT VT;
|
||||
if (!isTypeLegal(RetTy, VT))
|
||||
@ -2333,7 +2336,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
|
||||
}
|
||||
|
||||
const Value *SrcVal = II->getArgOperand(0);
|
||||
const Value *SrcVal = I.getArgOperand(0);
|
||||
unsigned SrcReg = getRegForValue(SrcVal);
|
||||
|
||||
if (SrcReg == 0)
|
||||
@ -2356,7 +2359,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
|
||||
MIB.addReg(SrcReg);
|
||||
|
||||
UpdateValueMap(II, ResultReg);
|
||||
UpdateValueMap(&I, ResultReg);
|
||||
return true;
|
||||
}
|
||||
case Intrinsic::sadd_with_overflow:
|
||||
@ -2367,7 +2370,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
case Intrinsic::umul_with_overflow: {
|
||||
// This implements the basic lowering of the xalu with overflow intrinsics
|
||||
// into add/sub/mul followed by either seto or setb.
|
||||
const Function *Callee = II->getCalledFunction();
|
||||
const Function *Callee = I.getCalledFunction();
|
||||
auto *Ty = cast<StructType>(Callee->getReturnType());
|
||||
Type *RetTy = Ty->getTypeAtIndex(0U);
|
||||
Type *CondTy = Ty->getTypeAtIndex(1);
|
||||
@ -2379,16 +2382,16 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
if (VT < MVT::i8 || VT > MVT::i64)
|
||||
return false;
|
||||
|
||||
const Value *LHS = II->getArgOperand(0);
|
||||
const Value *RHS = II->getArgOperand(1);
|
||||
const Value *LHS = I.getArgOperand(0);
|
||||
const Value *RHS = I.getArgOperand(1);
|
||||
|
||||
// Canonicalize immediate to the RHS.
|
||||
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
|
||||
isCommutativeIntrinsic(II))
|
||||
isCommutativeIntrinsic(I))
|
||||
std::swap(LHS, RHS);
|
||||
|
||||
unsigned BaseOpc, CondOpc;
|
||||
switch (II->getIntrinsicID()) {
|
||||
switch (I.getIntrinsicID()) {
|
||||
default: llvm_unreachable("Unexpected intrinsic!");
|
||||
case Intrinsic::sadd_with_overflow:
|
||||
BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break;
|
||||
@ -2465,7 +2468,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
|
||||
ResultReg2);
|
||||
|
||||
UpdateValueMap(II, ResultReg, 2);
|
||||
UpdateValueMap(&I, ResultReg, 2);
|
||||
return true;
|
||||
}
|
||||
case Intrinsic::x86_sse_cvttss2si:
|
||||
@ -2473,7 +2476,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
case Intrinsic::x86_sse2_cvttsd2si:
|
||||
case Intrinsic::x86_sse2_cvttsd2si64: {
|
||||
bool IsInputDouble;
|
||||
switch (II->getIntrinsicID()) {
|
||||
switch (I.getIntrinsicID()) {
|
||||
default: llvm_unreachable("Unexpected intrinsic.");
|
||||
case Intrinsic::x86_sse_cvttss2si:
|
||||
case Intrinsic::x86_sse_cvttss2si64:
|
||||
@ -2489,7 +2492,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
break;
|
||||
}
|
||||
|
||||
Type *RetTy = II->getCalledFunction()->getReturnType();
|
||||
Type *RetTy = I.getCalledFunction()->getReturnType();
|
||||
MVT VT;
|
||||
if (!isTypeLegal(RetTy, VT))
|
||||
return false;
|
||||
@ -2509,7 +2512,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
}
|
||||
|
||||
// Check if we can fold insertelement instructions into the convert.
|
||||
const Value *Op = II->getArgOperand(0);
|
||||
const Value *Op = I.getArgOperand(0);
|
||||
while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
|
||||
const Value *Index = IE->getOperand(2);
|
||||
if (!isa<ConstantInt>(Index))
|
||||
@ -2531,7 +2534,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
|
||||
.addReg(Reg);
|
||||
|
||||
UpdateValueMap(II, ResultReg);
|
||||
UpdateValueMap(&I, ResultReg);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@ -2632,52 +2635,53 @@ bool X86FastISel::FastLowerArguments() {
|
||||
return true;
|
||||
}
|
||||
|
||||
static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
|
||||
CallingConv::ID CC,
|
||||
ImmutableCallSite *CS) {
|
||||
if (Subtarget->is64Bit())
|
||||
bool X86FastISel::X86SelectCall(const Instruction *I) {
|
||||
const CallInst *CI = cast<CallInst>(I);
|
||||
const Value *Callee = CI->getCalledValue();
|
||||
|
||||
// Can't handle inline asm yet.
|
||||
if (isa<InlineAsm>(Callee))
|
||||
return false;
|
||||
|
||||
// Handle intrinsic calls.
|
||||
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
|
||||
return X86VisitIntrinsicCall(*II);
|
||||
|
||||
// Allow SelectionDAG isel to handle tail calls.
|
||||
if (cast<CallInst>(I)->isTailCall())
|
||||
return false;
|
||||
|
||||
return DoSelectCall(I, nullptr);
|
||||
}
|
||||
|
||||
static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget,
|
||||
const ImmutableCallSite &CS) {
|
||||
if (Subtarget.is64Bit())
|
||||
return 0;
|
||||
if (Subtarget->getTargetTriple().isOSMSVCRT())
|
||||
if (Subtarget.getTargetTriple().isOSMSVCRT())
|
||||
return 0;
|
||||
if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
|
||||
CC == CallingConv::HiPE)
|
||||
CallingConv::ID CC = CS.getCallingConv();
|
||||
if (CC == CallingConv::Fast || CC == CallingConv::GHC)
|
||||
return 0;
|
||||
if (CS && !CS->paramHasAttr(1, Attribute::StructRet))
|
||||
if (!CS.paramHasAttr(1, Attribute::StructRet))
|
||||
return 0;
|
||||
if (CS && CS->paramHasAttr(1, Attribute::InReg))
|
||||
if (CS.paramHasAttr(1, Attribute::InReg))
|
||||
return 0;
|
||||
return 4;
|
||||
}
|
||||
|
||||
bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
|
||||
auto &OutVals = CLI.OutVals;
|
||||
auto &OutFlags = CLI.OutFlags;
|
||||
auto &OutRegs = CLI.OutRegs;
|
||||
auto &Ins = CLI.Ins;
|
||||
auto &InRegs = CLI.InRegs;
|
||||
CallingConv::ID CC = CLI.CallConv;
|
||||
bool &IsTailCall = CLI.IsTailCall;
|
||||
bool IsVarArg = CLI.IsVarArg;
|
||||
const Value *Callee = CLI.Callee;
|
||||
const char *SymName = CLI.SymName;
|
||||
// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
|
||||
bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
|
||||
const CallInst *CI = cast<CallInst>(I);
|
||||
const Value *Callee = CI->getCalledValue();
|
||||
|
||||
bool Is64Bit = Subtarget->is64Bit();
|
||||
bool IsWin64 = Subtarget->isCallingConvWin64(CC);
|
||||
|
||||
// Handle only C, fastcc, and webkit_js calling conventions for now.
|
||||
switch (CC) {
|
||||
default: return false;
|
||||
case CallingConv::C:
|
||||
case CallingConv::Fast:
|
||||
case CallingConv::WebKit_JS:
|
||||
case CallingConv::X86_FastCall:
|
||||
case CallingConv::X86_64_Win64:
|
||||
case CallingConv::X86_64_SysV:
|
||||
break;
|
||||
}
|
||||
|
||||
// Allow SelectionDAG isel to handle tail calls.
|
||||
if (IsTailCall)
|
||||
// Handle only C and fastcc calling conventions for now.
|
||||
ImmutableCallSite CS(CI);
|
||||
CallingConv::ID CC = CS.getCallingConv();
|
||||
bool isWin64 = Subtarget->isCallingConvWin64(CC);
|
||||
if (CC != CallingConv::C && CC != CallingConv::Fast &&
|
||||
CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 &&
|
||||
CC != CallingConv::X86_64_SysV)
|
||||
return false;
|
||||
|
||||
// fastcc with -tailcallopt is intended to provide a guaranteed
|
||||
@ -2685,78 +2689,150 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
|
||||
if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
|
||||
return false;
|
||||
|
||||
PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
|
||||
FunctionType *FTy = cast<FunctionType>(PT->getElementType());
|
||||
bool isVarArg = FTy->isVarArg();
|
||||
|
||||
// Don't know how to handle Win64 varargs yet. Nothing special needed for
|
||||
// x86-32. Special handling for x86-64 is implemented.
|
||||
if (IsVarArg && IsWin64)
|
||||
// x86-32. Special handling for x86-64 is implemented.
|
||||
if (isVarArg && isWin64)
|
||||
return false;
|
||||
|
||||
// Don't know about inalloca yet.
|
||||
if (CLI.CS && CLI.CS->hasInAllocaArgument())
|
||||
if (CS.hasInAllocaArgument())
|
||||
return false;
|
||||
|
||||
// Fast-isel doesn't know about callee-pop yet.
|
||||
if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
|
||||
if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
|
||||
TM.Options.GuaranteedTailCallOpt))
|
||||
return false;
|
||||
|
||||
// If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
|
||||
// instruction. This is safe because it is common to all FastISel supported
|
||||
// calling conventions on x86.
|
||||
for (int i = 0, e = OutVals.size(); i != e; ++i) {
|
||||
Value *&Val = OutVals[i];
|
||||
ISD::ArgFlagsTy Flags = OutFlags[i];
|
||||
if (auto *CI = dyn_cast<ConstantInt>(Val)) {
|
||||
if (CI->getBitWidth() < 32) {
|
||||
// Check whether the function can return without sret-demotion.
|
||||
SmallVector<ISD::OutputArg, 4> Outs;
|
||||
GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI);
|
||||
bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
|
||||
*FuncInfo.MF, FTy->isVarArg(),
|
||||
Outs, FTy->getContext());
|
||||
if (!CanLowerReturn)
|
||||
return false;
|
||||
|
||||
// Materialize callee address in a register. FIXME: GV address can be
|
||||
// handled with a CALLpcrel32 instead.
|
||||
X86AddressMode CalleeAM;
|
||||
if (!X86SelectCallAddress(Callee, CalleeAM))
|
||||
return false;
|
||||
unsigned CalleeOp = 0;
|
||||
const GlobalValue *GV = nullptr;
|
||||
if (CalleeAM.GV != nullptr) {
|
||||
GV = CalleeAM.GV;
|
||||
} else if (CalleeAM.Base.Reg != 0) {
|
||||
CalleeOp = CalleeAM.Base.Reg;
|
||||
} else
|
||||
return false;
|
||||
|
||||
// Deal with call operands first.
|
||||
SmallVector<const Value *, 8> ArgVals;
|
||||
SmallVector<unsigned, 8> Args;
|
||||
SmallVector<MVT, 8> ArgVTs;
|
||||
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
|
||||
unsigned arg_size = CS.arg_size();
|
||||
Args.reserve(arg_size);
|
||||
ArgVals.reserve(arg_size);
|
||||
ArgVTs.reserve(arg_size);
|
||||
ArgFlags.reserve(arg_size);
|
||||
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
|
||||
i != e; ++i) {
|
||||
// If we're lowering a mem intrinsic instead of a regular call, skip the
|
||||
// last two arguments, which should not passed to the underlying functions.
|
||||
if (MemIntName && e-i <= 2)
|
||||
break;
|
||||
Value *ArgVal = *i;
|
||||
ISD::ArgFlagsTy Flags;
|
||||
unsigned AttrInd = i - CS.arg_begin() + 1;
|
||||
if (CS.paramHasAttr(AttrInd, Attribute::SExt))
|
||||
Flags.setSExt();
|
||||
if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
|
||||
Flags.setZExt();
|
||||
|
||||
if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
|
||||
PointerType *Ty = cast<PointerType>(ArgVal->getType());
|
||||
Type *ElementTy = Ty->getElementType();
|
||||
unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
|
||||
unsigned FrameAlign = CS.getParamAlignment(AttrInd);
|
||||
if (!FrameAlign)
|
||||
FrameAlign = TLI.getByValTypeAlignment(ElementTy);
|
||||
Flags.setByVal();
|
||||
Flags.setByValSize(FrameSize);
|
||||
Flags.setByValAlign(FrameAlign);
|
||||
if (!IsMemcpySmall(FrameSize))
|
||||
return false;
|
||||
}
|
||||
|
||||
if (CS.paramHasAttr(AttrInd, Attribute::InReg))
|
||||
Flags.setInReg();
|
||||
if (CS.paramHasAttr(AttrInd, Attribute::Nest))
|
||||
Flags.setNest();
|
||||
|
||||
// If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
|
||||
// instruction. This is safe because it is common to all fastisel supported
|
||||
// calling conventions on x86.
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
|
||||
if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
|
||||
CI->getBitWidth() == 16) {
|
||||
if (Flags.isSExt())
|
||||
Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
|
||||
ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
|
||||
else
|
||||
Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
|
||||
ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
|
||||
}
|
||||
}
|
||||
|
||||
unsigned ArgReg;
|
||||
|
||||
// Passing bools around ends up doing a trunc to i1 and passing it.
|
||||
// Codegen this as an argument + "and 1".
|
||||
if (auto *TI = dyn_cast<TruncInst>(Val)) {
|
||||
if (TI->getType()->isIntegerTy(1) && CLI.CS &&
|
||||
(TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
|
||||
TI->hasOneUse()) {
|
||||
Val = cast<TruncInst>(Val)->getOperand(0);
|
||||
unsigned ResultReg = getRegForValue(Val);
|
||||
if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
|
||||
cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
|
||||
ArgVal->hasOneUse()) {
|
||||
ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
|
||||
ArgReg = getRegForValue(ArgVal);
|
||||
if (ArgReg == 0) return false;
|
||||
|
||||
if (!ResultReg)
|
||||
return false;
|
||||
MVT ArgVT;
|
||||
if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
|
||||
|
||||
MVT ArgVT;
|
||||
if (!isTypeLegal(Val->getType(), ArgVT))
|
||||
return false;
|
||||
|
||||
ResultReg =
|
||||
FastEmit_ri(ArgVT, ArgVT, ISD::AND, ResultReg, Val->hasOneUse(), 1);
|
||||
|
||||
if (!ResultReg)
|
||||
return false;
|
||||
UpdateValueMap(Val, ResultReg);
|
||||
}
|
||||
ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
|
||||
ArgVal->hasOneUse(), 1);
|
||||
} else {
|
||||
ArgReg = getRegForValue(ArgVal);
|
||||
}
|
||||
|
||||
if (ArgReg == 0) return false;
|
||||
|
||||
Type *ArgTy = ArgVal->getType();
|
||||
MVT ArgVT;
|
||||
if (!isTypeLegal(ArgTy, ArgVT))
|
||||
return false;
|
||||
if (ArgVT == MVT::x86mmx)
|
||||
return false;
|
||||
unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
|
||||
Flags.setOrigAlign(OriginalAlignment);
|
||||
|
||||
Args.push_back(ArgReg);
|
||||
ArgVals.push_back(ArgVal);
|
||||
ArgVTs.push_back(ArgVT);
|
||||
ArgFlags.push_back(Flags);
|
||||
}
|
||||
|
||||
// Analyze operands of the call, assigning locations to each operand.
|
||||
SmallVector<CCValAssign, 16> ArgLocs;
|
||||
CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs,
|
||||
CLI.RetTy->getContext());
|
||||
CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
|
||||
I->getParent()->getContext());
|
||||
|
||||
// Allocate shadow area for Win64
|
||||
if (IsWin64)
|
||||
if (isWin64)
|
||||
CCInfo.AllocateStack(32, 8);
|
||||
|
||||
SmallVector<MVT, 16> OutVTs;
|
||||
for (auto *Val : OutVals) {
|
||||
MVT VT;
|
||||
if (!isTypeLegal(Val->getType(), VT, true))
|
||||
return false;
|
||||
OutVTs.push_back(VT);
|
||||
}
|
||||
CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
|
||||
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
|
||||
|
||||
// Get a count of how many bytes are to be pushed on the stack.
|
||||
unsigned NumBytes = CCInfo.getNextStackOffset();
|
||||
@ -2766,20 +2842,13 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
|
||||
.addImm(NumBytes);
|
||||
|
||||
// Walk the register/memloc assignments, inserting copies/loads.
|
||||
const X86RegisterInfo *RegInfo =
|
||||
static_cast<const X86RegisterInfo *>(TM.getRegisterInfo());
|
||||
// Process argument: walk the register/memloc assignments, inserting
|
||||
// copies / loads.
|
||||
SmallVector<unsigned, 4> RegArgs;
|
||||
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
||||
CCValAssign const &VA = ArgLocs[i];
|
||||
const Value *ArgVal = OutVals[VA.getValNo()];
|
||||
MVT ArgVT = OutVTs[VA.getValNo()];
|
||||
|
||||
if (ArgVT == MVT::x86mmx)
|
||||
return false;
|
||||
|
||||
unsigned ArgReg = getRegForValue(ArgVal);
|
||||
if (!ArgReg)
|
||||
return false;
|
||||
CCValAssign &VA = ArgLocs[i];
|
||||
unsigned Arg = Args[VA.getValNo()];
|
||||
EVT ArgVT = ArgVTs[VA.getValNo()];
|
||||
|
||||
// Promote the value if needed.
|
||||
switch (VA.getLocInfo()) {
|
||||
@ -2787,8 +2856,8 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
|
||||
case CCValAssign::SExt: {
|
||||
assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
|
||||
"Unexpected extend");
|
||||
bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
|
||||
ArgVT, ArgReg);
|
||||
bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
|
||||
Arg, ArgVT, Arg);
|
||||
assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
|
||||
ArgVT = VA.getLocVT();
|
||||
break;
|
||||
@ -2796,8 +2865,8 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
|
||||
case CCValAssign::ZExt: {
|
||||
assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
|
||||
"Unexpected extend");
|
||||
bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
|
||||
ArgVT, ArgReg);
|
||||
bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
|
||||
Arg, ArgVT, Arg);
|
||||
assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
|
||||
ArgVT = VA.getLocVT();
|
||||
break;
|
||||
@ -2805,67 +2874,66 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
|
||||
case CCValAssign::AExt: {
|
||||
assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
|
||||
"Unexpected extend");
|
||||
bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
|
||||
ArgVT, ArgReg);
|
||||
bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
|
||||
Arg, ArgVT, Arg);
|
||||
if (!Emitted)
|
||||
Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
|
||||
ArgVT, ArgReg);
|
||||
Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
|
||||
Arg, ArgVT, Arg);
|
||||
if (!Emitted)
|
||||
Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
|
||||
ArgVT, ArgReg);
|
||||
Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
|
||||
Arg, ArgVT, Arg);
|
||||
|
||||
assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
|
||||
ArgVT = VA.getLocVT();
|
||||
break;
|
||||
}
|
||||
case CCValAssign::BCvt: {
|
||||
ArgReg = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
|
||||
/*TODO: Kill=*/false);
|
||||
assert(ArgReg && "Failed to emit a bitcast!");
|
||||
unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
|
||||
ISD::BITCAST, Arg, /*TODO: Kill=*/false);
|
||||
assert(BC != 0 && "Failed to emit a bitcast!");
|
||||
Arg = BC;
|
||||
ArgVT = VA.getLocVT();
|
||||
break;
|
||||
}
|
||||
case CCValAssign::VExt:
|
||||
case CCValAssign::VExt:
|
||||
// VExt has not been implemented, so this should be impossible to reach
|
||||
// for now. However, fallback to Selection DAG isel once implemented.
|
||||
return false;
|
||||
case CCValAssign::FPExt:
|
||||
llvm_unreachable("Unexpected loc info!");
|
||||
case CCValAssign::Indirect:
|
||||
// FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
|
||||
// support this.
|
||||
return false;
|
||||
case CCValAssign::FPExt:
|
||||
llvm_unreachable("Unexpected loc info!");
|
||||
}
|
||||
|
||||
if (VA.isRegLoc()) {
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
|
||||
OutRegs.push_back(VA.getLocReg());
|
||||
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
|
||||
RegArgs.push_back(VA.getLocReg());
|
||||
} else {
|
||||
assert(VA.isMemLoc());
|
||||
unsigned LocMemOffset = VA.getLocMemOffset();
|
||||
X86AddressMode AM;
|
||||
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>(
|
||||
getTargetMachine()->getRegisterInfo());
|
||||
AM.Base.Reg = RegInfo->getStackRegister();
|
||||
AM.Disp = LocMemOffset;
|
||||
ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
|
||||
unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
|
||||
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
|
||||
MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore,
|
||||
ArgVT.getStoreSize(), Alignment);
|
||||
const Value *ArgVal = ArgVals[VA.getValNo()];
|
||||
ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
|
||||
|
||||
if (Flags.isByVal()) {
|
||||
X86AddressMode SrcAM;
|
||||
SrcAM.Base.Reg = ArgReg;
|
||||
if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
|
||||
return false;
|
||||
SrcAM.Base.Reg = Arg;
|
||||
bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
|
||||
assert(Res && "memcpy length already checked!"); (void)Res;
|
||||
} else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
|
||||
// If this is a really simple value, emit this with the Value* version
|
||||
// of X86FastEmitStore. If it isn't simple, we don't want to do this,
|
||||
// as it can cause us to reevaluate the argument.
|
||||
if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
|
||||
if (!X86FastEmitStore(ArgVT, ArgVal, AM))
|
||||
return false;
|
||||
} else {
|
||||
bool ValIsKill = hasTrivialKill(ArgVal);
|
||||
if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
|
||||
if (!X86FastEmitStore(ArgVT, Arg, /*ValIsKill=*/false, AM))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -2879,53 +2947,37 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
|
||||
TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
|
||||
}
|
||||
|
||||
if (Is64Bit && IsVarArg && !IsWin64) {
|
||||
// From AMD64 ABI document:
|
||||
// For calls that may call functions that use varargs or stdargs
|
||||
// (prototype-less calls or calls to functions containing ellipsis (...) in
|
||||
// the declaration) %al is used as hidden argument to specify the number
|
||||
// of SSE registers used. The contents of %al do not need to match exactly
|
||||
// the number of registers, but must be an ubound on the number of SSE
|
||||
// registers used and is in the range 0 - 8 inclusive.
|
||||
|
||||
if (Subtarget->is64Bit() && isVarArg && !isWin64) {
|
||||
// Count the number of XMM registers allocated.
|
||||
static const MCPhysReg XMMArgRegs[] = {
|
||||
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
|
||||
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
|
||||
};
|
||||
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
|
||||
assert((Subtarget->hasSSE1() || !NumXMMRegs)
|
||||
&& "SSE registers cannot be used when SSE is disabled");
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
|
||||
X86::AL).addImm(NumXMMRegs);
|
||||
}
|
||||
|
||||
// Materialize callee address in a register. FIXME: GV address can be
|
||||
// handled with a CALLpcrel32 instead.
|
||||
X86AddressMode CalleeAM;
|
||||
if (!X86SelectCallAddress(Callee, CalleeAM))
|
||||
return false;
|
||||
|
||||
unsigned CalleeOp = 0;
|
||||
const GlobalValue *GV = nullptr;
|
||||
if (CalleeAM.GV != nullptr) {
|
||||
GV = CalleeAM.GV;
|
||||
} else if (CalleeAM.Base.Reg != 0) {
|
||||
CalleeOp = CalleeAM.Base.Reg;
|
||||
} else
|
||||
return false;
|
||||
|
||||
// Issue the call.
|
||||
MachineInstrBuilder MIB;
|
||||
if (CalleeOp) {
|
||||
// Register-indirect call.
|
||||
unsigned CallOpc = Is64Bit ? X86::CALL64r : CallOpc = X86::CALL32r;
|
||||
unsigned CallOpc;
|
||||
if (Subtarget->is64Bit())
|
||||
CallOpc = X86::CALL64r;
|
||||
else
|
||||
CallOpc = X86::CALL32r;
|
||||
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
|
||||
.addReg(CalleeOp);
|
||||
|
||||
} else {
|
||||
// Direct call.
|
||||
assert(GV && "Not a direct call");
|
||||
unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
|
||||
unsigned CallOpc;
|
||||
if (Subtarget->is64Bit())
|
||||
CallOpc = X86::CALL64pcrel32;
|
||||
else
|
||||
CallOpc = X86::CALLpcrel32;
|
||||
|
||||
// See if we need any target-specific flags on the GV operand.
|
||||
unsigned char OpFlags = 0;
|
||||
@ -2948,97 +3000,114 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
|
||||
OpFlags = X86II::MO_DARWIN_STUB;
|
||||
}
|
||||
|
||||
|
||||
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
|
||||
if (SymName)
|
||||
MIB.addExternalSymbol(SymName, OpFlags);
|
||||
if (MemIntName)
|
||||
MIB.addExternalSymbol(MemIntName, OpFlags);
|
||||
else
|
||||
MIB.addGlobalAddress(GV, 0, OpFlags);
|
||||
}
|
||||
|
||||
// Add a register mask operand representing the call-preserved registers.
|
||||
// Add a register mask with the call-preserved registers.
|
||||
// Proper defs for return values will be added by setPhysRegsDeadExcept().
|
||||
MIB.addRegMask(TRI.getCallPreservedMask(CC));
|
||||
MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
|
||||
|
||||
// Add an implicit use GOT pointer in EBX.
|
||||
if (Subtarget->isPICStyleGOT())
|
||||
MIB.addReg(X86::EBX, RegState::Implicit);
|
||||
|
||||
if (Is64Bit && IsVarArg && !IsWin64)
|
||||
if (Subtarget->is64Bit() && isVarArg && !isWin64)
|
||||
MIB.addReg(X86::AL, RegState::Implicit);
|
||||
|
||||
// Add implicit physical register uses to the call.
|
||||
for (auto Reg : OutRegs)
|
||||
MIB.addReg(Reg, RegState::Implicit);
|
||||
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
|
||||
MIB.addReg(RegArgs[i], RegState::Implicit);
|
||||
|
||||
// Issue CALLSEQ_END
|
||||
unsigned NumBytesForCalleeToPop =
|
||||
computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
|
||||
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
|
||||
const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS);
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
|
||||
.addImm(NumBytes).addImm(NumBytesForCalleeToPop);
|
||||
.addImm(NumBytes).addImm(NumBytesCallee);
|
||||
|
||||
// Build info for return calling conv lowering code.
|
||||
// FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
|
||||
SmallVector<ISD::InputArg, 32> Ins;
|
||||
SmallVector<EVT, 4> RetTys;
|
||||
ComputeValueVTs(TLI, I->getType(), RetTys);
|
||||
for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
|
||||
EVT VT = RetTys[i];
|
||||
MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
|
||||
unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
|
||||
for (unsigned j = 0; j != NumRegs; ++j) {
|
||||
ISD::InputArg MyFlags;
|
||||
MyFlags.VT = RegisterVT;
|
||||
MyFlags.Used = !CS.getInstruction()->use_empty();
|
||||
if (CS.paramHasAttr(0, Attribute::SExt))
|
||||
MyFlags.Flags.setSExt();
|
||||
if (CS.paramHasAttr(0, Attribute::ZExt))
|
||||
MyFlags.Flags.setZExt();
|
||||
if (CS.paramHasAttr(0, Attribute::InReg))
|
||||
MyFlags.Flags.setInReg();
|
||||
Ins.push_back(MyFlags);
|
||||
}
|
||||
}
|
||||
|
||||
// Now handle call return values.
|
||||
SmallVector<unsigned, 4> UsedRegs;
|
||||
SmallVector<CCValAssign, 16> RVLocs;
|
||||
CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs,
|
||||
CLI.RetTy->getContext());
|
||||
CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
|
||||
I->getParent()->getContext());
|
||||
unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
|
||||
CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
|
||||
|
||||
// Copy all of the result registers out of their specified physreg.
|
||||
unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
|
||||
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
||||
CCValAssign &VA = RVLocs[i];
|
||||
EVT CopyVT = VA.getValVT();
|
||||
EVT CopyVT = RVLocs[i].getValVT();
|
||||
unsigned CopyReg = ResultReg + i;
|
||||
|
||||
// If this is x86-64, and we disabled SSE, we can't return FP values
|
||||
if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
|
||||
((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
|
||||
report_fatal_error("SSE register return with SSE disabled");
|
||||
}
|
||||
|
||||
// If this is a call to a function that returns an fp value on the floating
|
||||
// point stack, we must guarantee the value is popped from the stack, so
|
||||
// a COPY is not good enough - the copy instruction may be eliminated if the
|
||||
// return value is not used. We use the FpPOP_RETVAL instruction instead.
|
||||
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
|
||||
// If we prefer to use the value in xmm registers, copy it out as f80 and
|
||||
// use a truncate to move it from fp stack reg to xmm reg.
|
||||
if (isScalarFPTypeInSSEReg(VA.getValVT())) {
|
||||
// If this is a call to a function that returns an fp value on the x87 fp
|
||||
// stack, but where we prefer to use the value in xmm registers, copy it
|
||||
// out as F80 and use a truncate to move it from fp stack reg to xmm reg.
|
||||
if ((RVLocs[i].getLocReg() == X86::ST0 ||
|
||||
RVLocs[i].getLocReg() == X86::ST1)) {
|
||||
if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
|
||||
CopyVT = MVT::f80;
|
||||
CopyReg = createResultReg(&X86::RFP80RegClass);
|
||||
}
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(X86::FpPOP_RETVAL), CopyReg);
|
||||
|
||||
// Round the f80 to the right size, which also moves it to the appropriate
|
||||
// xmm register. This is accomplished by storing the f80 value in memory
|
||||
// and then loading it back.
|
||||
if (CopyVT != VA.getValVT()) {
|
||||
EVT ResVT = VA.getValVT();
|
||||
unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
|
||||
unsigned MemSize = ResVT.getSizeInBits()/8;
|
||||
int FI = MFI.CreateStackObject(MemSize, MemSize, false);
|
||||
addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(Opc)), FI)
|
||||
.addReg(CopyReg);
|
||||
Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
|
||||
addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(Opc), ResultReg + i), FI);
|
||||
}
|
||||
} else {
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
|
||||
InRegs.push_back(VA.getLocReg());
|
||||
TII.get(TargetOpcode::COPY),
|
||||
CopyReg).addReg(RVLocs[i].getLocReg());
|
||||
UsedRegs.push_back(RVLocs[i].getLocReg());
|
||||
}
|
||||
|
||||
if (CopyVT != RVLocs[i].getValVT()) {
|
||||
// Round the F80 the right size, which also moves to the appropriate xmm
|
||||
// register. This is accomplished by storing the F80 value in memory and
|
||||
// then loading it back. Ewww...
|
||||
EVT ResVT = RVLocs[i].getValVT();
|
||||
unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
|
||||
unsigned MemSize = ResVT.getSizeInBits()/8;
|
||||
int FI = MFI.CreateStackObject(MemSize, MemSize, false);
|
||||
addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(Opc)), FI)
|
||||
.addReg(CopyReg);
|
||||
Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
|
||||
addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(Opc), ResultReg + i), FI);
|
||||
}
|
||||
}
|
||||
|
||||
CLI.ResultReg = ResultReg;
|
||||
CLI.NumResultRegs = RVLocs.size();
|
||||
CLI.Call = MIB;
|
||||
if (RVLocs.size())
|
||||
UpdateValueMap(I, ResultReg, RVLocs.size());
|
||||
|
||||
// Set all unused physreg defs as dead.
|
||||
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool
|
||||
X86FastISel::TargetSelectInstruction(const Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
@ -3056,6 +3125,8 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) {
|
||||
return X86SelectZExt(I);
|
||||
case Instruction::Br:
|
||||
return X86SelectBranch(I);
|
||||
case Instruction::Call:
|
||||
return X86SelectCall(I);
|
||||
case Instruction::LShr:
|
||||
case Instruction::AShr:
|
||||
case Instruction::Shl:
|
||||
|
Loading…
x
Reference in New Issue
Block a user