Added capability to get execution count of a loop if it is a predictable

number of iterations.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4113 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Misha Brukman 2002-10-11 05:34:32 +00:00
parent 6b290a5440
commit a27229013f
2 changed files with 141 additions and 12 deletions

View File

@ -34,7 +34,7 @@ public:
Unknown, // Unknown type. Start & Step are null
} InductionType;
Value *Start, *Step; // Start and step expressions for this indvar
Value *Start, *Step, *End; // Start, step, and end expressions for this indvar
PHINode *Phi; // The PHI node that corresponds to this indvar
public:
@ -47,6 +47,9 @@ public:
static enum iType Classify(const Value *Start, const Value *Step,
const Loop *L = 0);
// Get number of times this loop will execute. Returns NULL if unpredictable.
Value* getExecutionCount(LoopInfo *LoopInfo);
void print(std::ostream &OS) const;
};

View File

@ -19,11 +19,15 @@
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/BasicBlock.h"
#include "llvm/iPHINode.h"
#include "llvm/InstrTypes.h"
#include "llvm/iOperators.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "Support/Statistic.h"
static bool isLoopInvariant(const Value *V, const Loop *L) {
if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
@ -37,14 +41,14 @@ static bool isLoopInvariant(const Value *V, const Loop *L) {
enum InductionVariable::iType
InductionVariable::Classify(const Value *Start, const Value *Step,
const Loop *L) {
const Loop *L) {
// Check for cannonical and simple linear expressions now...
if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
if (CStart->equalsInt(0) && CStep->equalsInt(1))
return Cannonical;
return Cannonical;
else
return SimpleLinear;
return SimpleLinear;
}
// Without loop information, we cannot do any better, so bail now...
@ -58,7 +62,7 @@ InductionVariable::Classify(const Value *Start, const Value *Step,
// Create an induction variable for the specified value. If it is a PHI, and
// if it's recognizable, classify it and fill in instance variables.
//
InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
InductionType = Unknown; // Assume the worst
Phi = P;
@ -92,7 +96,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
// with respect to the PHI node.
//
if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
E2.Var != Phi)
E2.Var != Phi)
return;
// Okay, we have found an induction variable. Save the start and step values
@ -117,17 +121,17 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
} else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
// TODO: This could be much better...
if (I->getOpcode() == Instruction::Add) {
if (I->getOperand(0) == Phi)
Step = I->getOperand(1);
else if (I->getOperand(1) == Phi)
Step = I->getOperand(0);
if (I->getOperand(0) == Phi)
Step = I->getOperand(1);
else if (I->getOperand(1) == Phi)
Step = I->getOperand(0);
}
}
if (Step == 0) { // Unrecognized step value...
ExprType StepE = ClassifyExpression(V2);
if (StepE.ExprTy != ExprType::Linear ||
StepE.Var != Phi) return;
StepE.Var != Phi) return;
const Type *ETy = Phi->getType();
if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
@ -153,6 +157,125 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
InductionType = InductionVariable::Classify(Start, Step, L);
}
Value* InductionVariable::getExecutionCount(LoopInfo *LoopInfo) {
DEBUG(std::cerr << "entering getExecutionCount\n");
// Don't recompute if already available
if (End) {
DEBUG(std::cerr << "returning cached End value.\n");
return End;
}
const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
if (!L) {
DEBUG(std::cerr << "null loop. oops\n");
return NULL;
}
// >1 backedge => cannot predict number of iterations
if (Phi->getNumIncomingValues() != 2) {
DEBUG(std::cerr << ">2 incoming values. oops\n");
return NULL;
}
// Find final node: predecesor of the loop header that's also an exit
BasicBlock *terminator;
BasicBlock *header = L->getHeader();
for (pred_iterator PI = pred_begin(header), PE = pred_end(header);
PI != PE; ++PI) {
if (L->isLoopExit(*PI)) {
terminator = *PI;
break;
}
}
// Break in the loop => cannot predict number of iterations
// break: any block which is an exit node whose successor is not in loop,
// and this block is not marked as the terminator
//
const std::vector<BasicBlock*> &blocks = L->getBlocks();
for (std::vector<BasicBlock*>::const_iterator i = blocks.begin(), e = blocks.end();
i != e; ++i) {
if (L->isLoopExit(*i) && (*i != terminator)) {
for (succ_iterator SI = succ_begin(*i), SE = succ_end(*i); SI != SE; ++SI) {
if (! L->contains(*SI)) {
DEBUG(std::cerr << "break found in loop");
return NULL;
}
}
}
}
BranchInst *B = dyn_cast<BranchInst>(terminator->getTerminator());
if (!B) {
// this really should not happen
DEBUG(std::cerr << "no terminator instruction!");
return NULL;
}
SetCondInst *SCI = dyn_cast<SetCondInst>(&*B->getCondition());
if (SCI && InductionType == Cannonical) {
DEBUG(std::cerr << "sci:" << *SCI);
Value *condVal0 = SCI->getOperand(0);
Value *condVal1 = SCI->getOperand(1);
Value *indVar = 0;
// the induction variable is the one coming from the backedge
if (L->contains(Phi->getIncomingBlock(0))) {
indVar = Phi->getIncomingValue(0);
} else {
indVar = Phi->getIncomingValue(1);
}
// check to see if indVar is one of the parameters in SCI
// and if the other is loop-invariant, it is the UB
if (indVar == condVal0) {
if (isLoopInvariant(condVal1, L)) {
End = condVal1;
} else {
DEBUG(std::cerr << "not loop invariant 1\n");
}
} else if (indVar == condVal1) {
if (isLoopInvariant(condVal0, L)) {
End = condVal0;
} else {
DEBUG(std::cerr << "not loop invariant 0\n");
}
}
if (End) {
switch (SCI->getOpcode()) {
case Instruction::SetLT:
case Instruction::SetNE: break; // already done
case Instruction::SetLE: {
// if compared to a constant int N, then predict N+1 iterations
if (ConstantSInt *ubSigned = dyn_cast<ConstantSInt>(End)) {
End = ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1);
DEBUG(std::cerr << "signed int constant\n");
} else if (ConstantUInt *ubUnsigned = dyn_cast<ConstantUInt>(End)) {
End = ConstantUInt::get(ubUnsigned->getType(), ubUnsigned->getValue()+1);
DEBUG(std::cerr << "unsigned int constant\n");
} else {
DEBUG(std::cerr << "symbolic bound\n");
//End = NULL;
// new expression N+1
End = BinaryOperator::create(Instruction::Add, End,
ConstantUInt::get(ubUnsigned->getType(), 1));
}
break;
}
default: End = NULL; // cannot predict
}
}
return End;
} else {
DEBUG(std::cerr << "SCI null or non-cannonical ind var\n");
}
return NULL;
}
void InductionVariable::print(std::ostream &o) const {
switch (InductionType) {
case InductionVariable::Cannonical: o << "Cannonical "; break;
@ -171,5 +294,8 @@ void InductionVariable::print(std::ostream &o) const {
o << " Start = "; WriteAsOperand(o, Start);
o << " Step = " ; WriteAsOperand(o, Step);
if (End) {
o << " End = " ; WriteAsOperand(o, End);
}
o << "\n";
}