* Make debug output conditional on #define

* Add optimization to rank computation to not recursively search when
  unneccesary.
* More agressively negate expressions to open reassociation opportunities.
* Linearize (A+B)+(C+D) into ((A+B)+C)+D


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2637 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-05-16 04:37:07 +00:00
parent 5abaa0c290
commit a36e6c8cd5

View File

@ -27,6 +27,10 @@
#include "Support/PostOrderIterator.h"
#include "Support/StatisticReporter.h"
//#define DEBUG_REASSOC(x) std::cerr << x
#define DEBUG_REASSOC(x)
static Statistic<> NumLinear ("reassociate\t- Number of insts linearized");
static Statistic<> NumChanged("reassociate\t- Number of insts reassociated");
static Statistic<> NumSwapped("reassociate\t- Number of insts with operands swapped");
@ -75,8 +79,9 @@ unsigned Reassociate::getRank(Value *V) {
I->hasSideEffects())
return RankMap[I->getParent()];
unsigned Rank = 0;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
for (unsigned i = 0, e = I->getNumOperands();
i != e && Rank != MaxRank; ++i)
Rank = std::max(Rank, getRank(I->getOperand(i)));
return Rank;
@ -120,7 +125,7 @@ bool Reassociate::ReassociateExpr(BinaryOperator *I) {
std::swap(LHSRank, RHSRank);
Changed = true;
++NumSwapped;
//cerr << "Transposed: " << I << " Result BB: " << I->getParent();
DEBUG_REASSOC("Transposed: " << I << " Result BB: " << I->getParent());
}
// If the LHS is the same operator as the current one is, and if we are the
@ -142,7 +147,7 @@ bool Reassociate::ReassociateExpr(BinaryOperator *I) {
I->setOperand(1, LHSI);
++NumChanged;
//cerr << "Reassociated: " << I << " Result BB: " << I->getParent();
DEBUG_REASSOC("Reassociated: " << I << " Result BB: " <<I->getParent());
// Since we modified the RHS instruction, make sure that we recheck it.
ReassociateExpr(LHSI);
@ -154,6 +159,55 @@ bool Reassociate::ReassociateExpr(BinaryOperator *I) {
}
// NegateValue - Insert instructions before the instruction pointed to by BI,
// that computes the negative version of the value specified. The negative
// version of the value is returned, and BI is left pointing at the instruction
// that should be processed next by the reassociation pass.
//
static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) {
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
// this means that we turn this:
// X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
// so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
// the constants. We assume that instcombine will clean up the mess later if
// we introduce tons of unneccesary negation instructions...
//
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Add && I->use_size() == 1) {
Value *RHS = NegateValue(I->getOperand(1), BB, BI);
Value *LHS = NegateValue(I->getOperand(0), BB, BI);
// We must actually insert a new add instruction here, because the neg
// instructions do not dominate the old add instruction in general. By
// adding it now, we are assured that the neg instructions we just
// inserted dominate the instruction we are about to insert after them.
//
BasicBlock::iterator NBI = BI;
// Scan through the inserted instructions, looking for RHS, which must be
// after LHS in the instruction list.
while (*NBI != RHS) ++NBI;
Instruction *Add =
BinaryOperator::create(Instruction::Add, LHS, RHS, I->getName()+".neg");
BB->getInstList().insert(NBI+1, Add); // Add to the basic block...
return Add;
}
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
//
Instruction *Neg =
BinaryOperator::create(Instruction::Sub,
Constant::getNullValue(V->getType()), V,
V->getName()+".neg");
BI = BB->getInstList().insert(BI, Neg); // Add to the basic block...
return Neg;
}
bool Reassociate::ReassociateBB(BasicBlock *BB) {
bool Changed = false;
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
@ -163,10 +217,35 @@ bool Reassociate::ReassociateBB(BasicBlock *BB) {
// the two operands are sorted incorrectly, fix it now.
//
if (BinaryOperator *I = isCommutativeOperator(Inst)) {
// Make sure that this expression is correctly reassociated with respect
// to it's used values...
//
Changed |= ReassociateExpr(I);
if (!I->use_empty()) {
// Make sure that we don't have a tree-shaped computation. If we do,
// linearize it. Convert (A+B)+(C+D) into ((A+B)+C)+D
//
Instruction *LHSI = dyn_cast<Instruction>(I->getOperand(0));
Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
RHSI->use_size() == 1) {
// Insert a new temporary instruction... (A+B)+C
BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
RHSI->getOperand(0),
RHSI->getName()+".ra");
BI = BB->getInstList().insert(BI, Tmp); // Add to the basic block...
I->setOperand(0, Tmp);
I->setOperand(1, RHSI->getOperand(1));
// Process the temporary instruction for reassociation now.
I = Tmp;
++NumLinear;
Changed = true;
DEBUG_REASSOC("Linearized: " << I << " Result BB: " << BB);
}
// Make sure that this expression is correctly reassociated with respect
// to it's used values...
//
Changed |= ReassociateExpr(I);
}
} else if (Inst->getOpcode() == Instruction::Sub &&
Inst->getOperand(0) != Constant::getNullValue(Inst->getType())) {
@ -174,16 +253,23 @@ bool Reassociate::ReassociateBB(BasicBlock *BB) {
// instructions can be commuted with other add instructions...
//
Instruction *New = BinaryOperator::create(Instruction::Add,
Inst->getOperand(0), Inst,
Inst->getOperand(0),
Inst->getOperand(1),
Inst->getName());
Value *NegatedValue = Inst->getOperand(1);
// Everyone now refers to the add instruction...
Inst->replaceAllUsesWith(New);
Inst->setName(Inst->getOperand(1)->getName()+".neg");
New->setOperand(1, Inst); // Except for the add inst itself!
BI = BB->getInstList().insert(BI+1, New)-1; // Add to the basic block...
Inst->setOperand(0, Constant::getNullValue(Inst->getType()));
// Put the new add in the place of the subtract... deleting the subtract
delete BB->getInstList().replaceWith(BI, New);
// Calculate the negative value of Operand 1 of the sub instruction...
// and set it as the RHS of the add instruction we just made...
New->setOperand(1, NegateValue(NegatedValue, BB, BI));
--BI;
Changed = true;
DEBUG_REASSOC("Negated: " << New << " Result BB: " << BB);
}
}