|
|
|
@ -1,12 +1,12 @@
|
|
|
|
|
//===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===//
|
|
|
|
|
//
|
|
|
|
|
// Correlated Expression Elimination propogates information from conditional
|
|
|
|
|
// branches to blocks dominated by destinations of the branch. It propogates
|
|
|
|
|
// Correlated Expression Elimination propagates information from conditional
|
|
|
|
|
// branches to blocks dominated by destinations of the branch. It propagates
|
|
|
|
|
// information from the condition check itself into the body of the branch,
|
|
|
|
|
// allowing transformations like these for example:
|
|
|
|
|
//
|
|
|
|
|
// if (i == 7)
|
|
|
|
|
// ... 4*i; // constant propogation
|
|
|
|
|
// ... 4*i; // constant propagation
|
|
|
|
|
//
|
|
|
|
|
// M = i+1; N = j+1;
|
|
|
|
|
// if (i == j)
|
|
|
|
@ -91,7 +91,7 @@ namespace {
|
|
|
|
|
// kept sorted by the Val field.
|
|
|
|
|
std::vector<Relation> Relationships;
|
|
|
|
|
|
|
|
|
|
// If information about this value is known or propogated from constant
|
|
|
|
|
// If information about this value is known or propagated from constant
|
|
|
|
|
// expressions, this range contains the possible values this value may hold.
|
|
|
|
|
ConstantRange Bounds;
|
|
|
|
|
|
|
|
|
@ -254,9 +254,9 @@ namespace {
|
|
|
|
|
void InsertRegionExitMerges(PHINode *NewPHI, Instruction *OldVal,
|
|
|
|
|
const std::vector<BasicBlock*> &RegionExitBlocks);
|
|
|
|
|
|
|
|
|
|
void PropogateBranchInfo(BranchInst *BI);
|
|
|
|
|
void PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI);
|
|
|
|
|
void PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0,
|
|
|
|
|
void PropagateBranchInfo(BranchInst *BI);
|
|
|
|
|
void PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI);
|
|
|
|
|
void PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
|
|
|
|
|
Value *Op1, RegionInfo &RI);
|
|
|
|
|
void UpdateUsersOfValue(Value *V, RegionInfo &RI);
|
|
|
|
|
void IncorporateInstruction(Instruction *Inst, RegionInfo &RI);
|
|
|
|
@ -331,11 +331,11 @@ bool CEE::TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks){
|
|
|
|
|
|
|
|
|
|
// Loop over all of the blocks that this block is the immediate dominator for.
|
|
|
|
|
// Because all information known in this region is also known in all of the
|
|
|
|
|
// blocks that are dominated by this one, we can safely propogate the
|
|
|
|
|
// blocks that are dominated by this one, we can safely propagate the
|
|
|
|
|
// information down now.
|
|
|
|
|
//
|
|
|
|
|
DominatorTree::Node *BBN = (*DT)[BB];
|
|
|
|
|
if (!RI.empty()) // Time opt: only propogate if we can change something
|
|
|
|
|
if (!RI.empty()) // Time opt: only propagate if we can change something
|
|
|
|
|
for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) {
|
|
|
|
|
BasicBlock *Dominated = BBN->getChildren()[i]->getNode();
|
|
|
|
|
assert(RegionInfoMap.find(Dominated) == RegionInfoMap.end() &&
|
|
|
|
@ -344,11 +344,11 @@ bool CEE::TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks){
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Now that all of our successors have information if they deserve it,
|
|
|
|
|
// propogate any information our terminator instruction finds to our
|
|
|
|
|
// propagate any information our terminator instruction finds to our
|
|
|
|
|
// successors.
|
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI))
|
|
|
|
|
if (BI->isConditional())
|
|
|
|
|
PropogateBranchInfo(BI);
|
|
|
|
|
PropagateBranchInfo(BI);
|
|
|
|
|
|
|
|
|
|
// If this is a branch to a block outside our region that simply performs
|
|
|
|
|
// another conditional branch, one whose outcome is known inside of this
|
|
|
|
@ -453,11 +453,11 @@ bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
|
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(&*I)) {
|
|
|
|
|
int OpNum = PN->getBasicBlockIndex(BB);
|
|
|
|
|
assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?");
|
|
|
|
|
PropogateEquality(PN, PN->getIncomingValue(OpNum), NewRI);
|
|
|
|
|
PropagateEquality(PN, PN->getIncomingValue(OpNum), NewRI);
|
|
|
|
|
} else if (SetCondInst *SCI = dyn_cast<SetCondInst>(&*I)) {
|
|
|
|
|
Relation::KnownResult Res = getSetCCResult(SCI, NewRI);
|
|
|
|
|
if (Res == Relation::Unknown) return false;
|
|
|
|
|
PropogateEquality(SCI, ConstantBool::get(Res), NewRI);
|
|
|
|
|
PropagateEquality(SCI, ConstantBool::get(Res), NewRI);
|
|
|
|
|
} else {
|
|
|
|
|
assert(isa<BranchInst>(*I) && "Unexpected instruction type!");
|
|
|
|
|
}
|
|
|
|
@ -760,30 +760,30 @@ void CEE::BuildRankMap(Function &F) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// PropogateBranchInfo - When this method is invoked, we need to propogate
|
|
|
|
|
// PropagateBranchInfo - When this method is invoked, we need to propagate
|
|
|
|
|
// information derived from the branch condition into the true and false
|
|
|
|
|
// branches of BI. Since we know that there aren't any critical edges in the
|
|
|
|
|
// flow graph, this can proceed unconditionally.
|
|
|
|
|
//
|
|
|
|
|
void CEE::PropogateBranchInfo(BranchInst *BI) {
|
|
|
|
|
void CEE::PropagateBranchInfo(BranchInst *BI) {
|
|
|
|
|
assert(BI->isConditional() && "Must be a conditional branch!");
|
|
|
|
|
|
|
|
|
|
// Propogate information into the true block...
|
|
|
|
|
// Propagate information into the true block...
|
|
|
|
|
//
|
|
|
|
|
PropogateEquality(BI->getCondition(), ConstantBool::True,
|
|
|
|
|
PropagateEquality(BI->getCondition(), ConstantBool::True,
|
|
|
|
|
getRegionInfo(BI->getSuccessor(0)));
|
|
|
|
|
|
|
|
|
|
// Propogate information into the false block...
|
|
|
|
|
// Propagate information into the false block...
|
|
|
|
|
//
|
|
|
|
|
PropogateEquality(BI->getCondition(), ConstantBool::False,
|
|
|
|
|
PropagateEquality(BI->getCondition(), ConstantBool::False,
|
|
|
|
|
getRegionInfo(BI->getSuccessor(1)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// PropogateEquality - If we discover that two values are equal to each other in
|
|
|
|
|
// a specified region, propogate this knowledge recursively.
|
|
|
|
|
// PropagateEquality - If we discover that two values are equal to each other in
|
|
|
|
|
// a specified region, propagate this knowledge recursively.
|
|
|
|
|
//
|
|
|
|
|
void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
|
|
|
|
|
void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
|
|
|
|
|
if (Op0 == Op1) return; // Gee whiz. Are these really equal each other?
|
|
|
|
|
|
|
|
|
|
if (isa<Constant>(Op0)) // Make sure the constant is always Op1
|
|
|
|
@ -811,8 +811,8 @@ void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
|
|
|
|
|
// as well.
|
|
|
|
|
//
|
|
|
|
|
if (CB->getValue() && Inst->getOpcode() == Instruction::And) {
|
|
|
|
|
PropogateEquality(Inst->getOperand(0), CB, RI);
|
|
|
|
|
PropogateEquality(Inst->getOperand(1), CB, RI);
|
|
|
|
|
PropagateEquality(Inst->getOperand(0), CB, RI);
|
|
|
|
|
PropagateEquality(Inst->getOperand(1), CB, RI);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we know that this instruction is an OR instruction, and the result
|
|
|
|
@ -820,8 +820,8 @@ void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
|
|
|
|
|
// as well.
|
|
|
|
|
//
|
|
|
|
|
if (!CB->getValue() && Inst->getOpcode() == Instruction::Or) {
|
|
|
|
|
PropogateEquality(Inst->getOperand(0), CB, RI);
|
|
|
|
|
PropogateEquality(Inst->getOperand(1), CB, RI);
|
|
|
|
|
PropagateEquality(Inst->getOperand(0), CB, RI);
|
|
|
|
|
PropagateEquality(Inst->getOperand(1), CB, RI);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we know that this instruction is a NOT instruction, we know that the
|
|
|
|
@ -829,48 +829,48 @@ void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
|
|
|
|
|
//
|
|
|
|
|
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Inst))
|
|
|
|
|
if (BinaryOperator::isNot(BOp))
|
|
|
|
|
PropogateEquality(BinaryOperator::getNotArgument(BOp),
|
|
|
|
|
PropagateEquality(BinaryOperator::getNotArgument(BOp),
|
|
|
|
|
ConstantBool::get(!CB->getValue()), RI);
|
|
|
|
|
|
|
|
|
|
// If we know the value of a SetCC instruction, propogate the information
|
|
|
|
|
// If we know the value of a SetCC instruction, propagate the information
|
|
|
|
|
// about the relation into this region as well.
|
|
|
|
|
//
|
|
|
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
|
|
|
|
|
if (CB->getValue()) { // If we know the condition is true...
|
|
|
|
|
// Propogate info about the LHS to the RHS & RHS to LHS
|
|
|
|
|
PropogateRelation(SCI->getOpcode(), SCI->getOperand(0),
|
|
|
|
|
// Propagate info about the LHS to the RHS & RHS to LHS
|
|
|
|
|
PropagateRelation(SCI->getOpcode(), SCI->getOperand(0),
|
|
|
|
|
SCI->getOperand(1), RI);
|
|
|
|
|
PropogateRelation(SCI->getSwappedCondition(),
|
|
|
|
|
PropagateRelation(SCI->getSwappedCondition(),
|
|
|
|
|
SCI->getOperand(1), SCI->getOperand(0), RI);
|
|
|
|
|
|
|
|
|
|
} else { // If we know the condition is false...
|
|
|
|
|
// We know the opposite of the condition is true...
|
|
|
|
|
Instruction::BinaryOps C = SCI->getInverseCondition();
|
|
|
|
|
|
|
|
|
|
PropogateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI);
|
|
|
|
|
PropogateRelation(SetCondInst::getSwappedCondition(C),
|
|
|
|
|
PropagateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI);
|
|
|
|
|
PropagateRelation(SetCondInst::getSwappedCondition(C),
|
|
|
|
|
SCI->getOperand(1), SCI->getOperand(0), RI);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Propogate information about Op0 to Op1 & visa versa
|
|
|
|
|
PropogateRelation(Instruction::SetEQ, Op0, Op1, RI);
|
|
|
|
|
PropogateRelation(Instruction::SetEQ, Op1, Op0, RI);
|
|
|
|
|
// Propagate information about Op0 to Op1 & visa versa
|
|
|
|
|
PropagateRelation(Instruction::SetEQ, Op0, Op1, RI);
|
|
|
|
|
PropagateRelation(Instruction::SetEQ, Op1, Op0, RI);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// PropogateRelation - We know that the specified relation is true in all of the
|
|
|
|
|
// blocks in the specified region. Propogate the information about Op0 and
|
|
|
|
|
// PropagateRelation - We know that the specified relation is true in all of the
|
|
|
|
|
// blocks in the specified region. Propagate the information about Op0 and
|
|
|
|
|
// anything derived from it into this region.
|
|
|
|
|
//
|
|
|
|
|
void CEE::PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0,
|
|
|
|
|
void CEE::PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
|
|
|
|
|
Value *Op1, RegionInfo &RI) {
|
|
|
|
|
assert(Op0->getType() == Op1->getType() && "Equal types expected!");
|
|
|
|
|
|
|
|
|
|
// Constants are already pretty well understood. We will apply information
|
|
|
|
|
// about the constant to Op1 in another call to PropogateRelation.
|
|
|
|
|
// about the constant to Op1 in another call to PropagateRelation.
|
|
|
|
|
//
|
|
|
|
|
if (isa<Constant>(Op0)) return;
|
|
|
|
|
|
|
|
|
@ -896,7 +896,7 @@ void CEE::PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If the information propogted is new, then we want process the uses of this
|
|
|
|
|
// instruction to propogate the information down to them.
|
|
|
|
|
// instruction to propagate the information down to them.
|
|
|
|
|
//
|
|
|
|
|
if (Op1R.incorporate(Opcode, VI))
|
|
|
|
|
UpdateUsersOfValue(Op0, RI);
|
|
|
|
@ -904,16 +904,16 @@ void CEE::PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// UpdateUsersOfValue - The information about V in this region has been updated.
|
|
|
|
|
// Propogate this to all consumers of the value.
|
|
|
|
|
// Propagate this to all consumers of the value.
|
|
|
|
|
//
|
|
|
|
|
void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) {
|
|
|
|
|
for (Value::use_iterator I = V->use_begin(), E = V->use_end();
|
|
|
|
|
I != E; ++I)
|
|
|
|
|
if (Instruction *Inst = dyn_cast<Instruction>(*I)) {
|
|
|
|
|
// If this is an instruction using a value that we know something about,
|
|
|
|
|
// try to propogate information to the value produced by the
|
|
|
|
|
// try to propagate information to the value produced by the
|
|
|
|
|
// instruction. We can only do this if it is an instruction we can
|
|
|
|
|
// propogate information for (a setcc for example), and we only WANT to
|
|
|
|
|
// propagate information for (a setcc for example), and we only WANT to
|
|
|
|
|
// do this if the instruction dominates this region.
|
|
|
|
|
//
|
|
|
|
|
// If the instruction doesn't dominate this region, then it cannot be
|
|
|
|
@ -937,7 +937,7 @@ void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) {
|
|
|
|
|
// See if we can figure out a result for this instruction...
|
|
|
|
|
Relation::KnownResult Result = getSetCCResult(SCI, RI);
|
|
|
|
|
if (Result != Relation::Unknown) {
|
|
|
|
|
PropogateEquality(SCI, Result ? ConstantBool::True : ConstantBool::False,
|
|
|
|
|
PropagateEquality(SCI, Result ? ConstantBool::True : ConstantBool::False,
|
|
|
|
|
RI);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|