Give SmallSet a reasonable fallback if it gets large: use an std::set.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33582 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2007-01-27 08:14:53 +00:00
parent 0b930852cf
commit a5b4760cbd

View File

@ -15,66 +15,90 @@
#define LLVM_ADT_SMALLSET_H #define LLVM_ADT_SMALLSET_H
#include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallVector.h"
#include <set>
namespace llvm { namespace llvm {
/// SmallSet - This maintains a set of unique values, optimizing for the case /// SmallSet - This maintains a set of unique values, optimizing for the case
/// when the set is small (less than N). In this case, the set can be /// when the set is small (less than N). In this case, the set can be
/// maintained with no mallocs. /// maintained with no mallocs. If the set gets large, we expand to using an
/// std::set to maintain reasonable lookup times.
/// ///
/// Note that this set does not guarantee that the elements in the set will be /// Note that this set does not provide a way to iterate over members in the
/// ordered. /// set.
template <typename T, unsigned N> template <typename T, unsigned N>
class SmallSet { class SmallSet {
/// Use a SmallVector to hold the elements here (even though it will never
/// reach it's 'large' stage) to avoid calling the default ctors of elements
/// we will never use.
SmallVector<T, N> Vector; SmallVector<T, N> Vector;
std::set<T> Set;
typedef typename SmallVector<T, N>::const_iterator VIterator;
typedef typename SmallVector<T, N>::iterator mutable_iterator; typedef typename SmallVector<T, N>::iterator mutable_iterator;
public: public:
SmallSet() {} SmallSet() {}
// Support iteration. bool empty() const { return Vector.empty() && Set.empty(); }
typedef typename SmallVector<T, N>::const_iterator iterator; unsigned size() const {
typedef typename SmallVector<T, N>::const_iterator const_iterator; return isSmall() ? Vector.size() : Set.size();
iterator begin() const { return Vector.begin(); }
iterator end() const { return Vector.end(); }
bool empty() const { return Vector.empty(); }
unsigned size() const { return Vector.size(); }
iterator find(const T &V) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (*I == V)
return I;
return end();
} }
/// count - Return true if the element is in the set. /// count - Return true if the element is in the set.
unsigned count(const T &V) const { bool count(const T &V) const {
// Since the collection is small, just do a linear search. if (isSmall()) {
return find(V) != end(); // Since the collection is small, just do a linear search.
return vfind(V) != Vector.end();
} else {
return Set.count(V);
}
} }
/// insert - Insert an element into the set if it isn't already there. /// insert - Insert an element into the set if it isn't already there.
bool insert(const T &V) { bool insert(const T &V) {
iterator I = find(V); if (!isSmall())
if (I != end()) // Don't reinsert if it already exists. return Set.insert(V).second;
VIterator I = vfind(V);
if (I != Vector.end()) // Don't reinsert if it already exists.
return false; return false;
Vector.push_back(V); if (Vector.size() < N) {
Vector.push_back(V);
return true;
}
// Otherwise, grow from vector to set.
while (!Vector.empty()) {
Set.insert(Vector.back());
Vector.pop_back();
}
Set.insert(V);
return true; return true;
} }
void erase(const T &V) { bool erase(const T &V) {
if (!isSmall())
return Set.erase(V).second;
for (mutable_iterator I = Vector.begin(), E = Vector.end(); I != E; ++I) for (mutable_iterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
if (*I == V) { if (*I == V) {
Vector.erase(I); Vector.erase(I);
return; return true;
} }
return false;
} }
void clear() { void clear() {
Vector.clear(); Vector.clear();
Set.clear();
}
private:
bool isSmall() const { return Set.empty(); }
VIterator vfind(const T &V) const {
for (VIterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
if (*I == V)
return I;
return Vector.end();
} }
}; };