Adding a basic ELF dynamic loader and MC-JIT for ELF. Functionality is currently basic and will be enhanced with future patches.

Patch developed by Andy Kaylor and Daniel Malea. Reviewed on llvm-commits.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148231 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eli Bendersky 2012-01-16 08:56:09 +00:00
parent 810d6d3354
commit a66a18505e
46 changed files with 463 additions and 64 deletions

View File

@ -1,4 +1,5 @@
add_llvm_library(LLVMRuntimeDyld
RuntimeDyld.cpp
RuntimeDyldMachO.cpp
RuntimeDyldELF.cpp
)

View File

@ -13,6 +13,7 @@
#define DEBUG_TYPE "dyld"
#include "RuntimeDyldImpl.h"
#include "llvm/Support/Path.h"
using namespace llvm;
using namespace llvm::object;
@ -64,10 +65,34 @@ RuntimeDyld::~RuntimeDyld() {
bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
if (!Dyld) {
if (RuntimeDyldMachO::isKnownFormat(InputBuffer))
sys::LLVMFileType type = sys::IdentifyFileType(
InputBuffer->getBufferStart(),
static_cast<unsigned>(InputBuffer->getBufferSize()));
switch (type) {
case sys::ELF_Relocatable_FileType:
case sys::ELF_Executable_FileType:
case sys::ELF_SharedObject_FileType:
case sys::ELF_Core_FileType:
Dyld = new RuntimeDyldELF(MM);
break;
case sys::Mach_O_Object_FileType:
case sys::Mach_O_Executable_FileType:
case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
case sys::Mach_O_Core_FileType:
case sys::Mach_O_PreloadExecutable_FileType:
case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
case sys::Mach_O_DynamicLinker_FileType:
case sys::Mach_O_Bundle_FileType:
case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
case sys::Mach_O_DSYMCompanion_FileType:
Dyld = new RuntimeDyldMachO(MM);
else
report_fatal_error("Unknown object format!");
break;
case sys::Unknown_FileType:
case sys::Bitcode_FileType:
case sys::Archive_FileType:
case sys::COFF_FileType:
report_fatal_error("Incompatible object format!");
}
} else {
if (!Dyld->isCompatibleFormat(InputBuffer))
report_fatal_error("Incompatible object format!");

View File

@ -0,0 +1,282 @@
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dyld"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/IntervalMap.h"
#include "RuntimeDyldImpl.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/ADT/Triple.h"
using namespace llvm;
using namespace llvm::object;
namespace llvm {
namespace {
// FIXME: this function should probably not live here...
//
// Returns the name and address of an unrelocated symbol in an ELF section
void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
//FIXME: error checking here required to catch corrupt ELF objects...
error_code Err = Sym->getName(Name);
uint64_t AddrInSection;
Err = Sym->getAddress(AddrInSection);
SectionRef empty_section;
section_iterator Section(empty_section);
Err = Sym->getSection(Section);
StringRef SectionContents;
Section->getContents(SectionContents);
Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
}
}
bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
if (!isCompatibleFormat(InputBuffer))
return true;
OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));
Arch = Obj->getArch();
// Map address in the Object file image to function names
IntervalMap<uint64_t, StringRef>::Allocator A;
IntervalMap<uint64_t, StringRef> FuncMap(A);
// This is a bit of a hack. The ObjectFile we've just loaded reports
// section addresses as 0 and doesn't provide access to the section
// offset (from which we could calculate the address. Instead,
// we're storing the address when it comes up in the ST_Debug case
// below.
//
StringMap<uint64_t> DebugSymbolMap;
symbol_iterator SymEnd = Obj->end_symbols();
error_code Err;
for (symbol_iterator Sym = Obj->begin_symbols();
Sym != SymEnd; Sym.increment(Err)) {
SymbolRef::Type Type;
Sym->getType(Type);
if (Type == SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
getSymbolInfo(Sym, Addr, Name);
uint64_t Size;
Err = Sym->getSize(Size);
uint8_t *Start;
uint8_t *End;
Start = reinterpret_cast<uint8_t*>(Addr);
End = reinterpret_cast<uint8_t*>(Addr + Size - 1);
extractFunction(Name, Start, End);
FuncMap.insert(Addr, Addr + Size - 1, Name);
} else if (Type == SymbolRef::ST_Debug) {
// This case helps us find section addresses
StringRef Name;
uint64_t Addr;
getSymbolInfo(Sym, Addr, Name);
DebugSymbolMap[Name] = Addr;
}
}
// Iterate through the relocations for this object
section_iterator SecEnd = Obj->end_sections();
for (section_iterator Sec = Obj->begin_sections();
Sec != SecEnd; Sec.increment(Err)) {
StringRef SecName;
uint64_t SecAddr;
Sec->getName(SecName);
// Ignore sections that aren't in our map
if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
continue;
}
SecAddr = DebugSymbolMap[SecName];
relocation_iterator RelEnd = Sec->end_relocations();
for (relocation_iterator Rel = Sec->begin_relocations();
Rel != RelEnd; Rel.increment(Err)) {
uint64_t RelOffset;
uint64_t RelType;
int64_t RelAddend;
SymbolRef RelSym;
StringRef SymName;
uint64_t SymAddr;
uint64_t SymOffset;
Rel->getAddress(RelOffset);
Rel->getType(RelType);
Rel->getAdditionalInfo(RelAddend);
Rel->getSymbol(RelSym);
RelSym.getName(SymName);
RelSym.getAddress(SymAddr);
RelSym.getFileOffset(SymOffset);
// If this relocation is inside a function, we want to store the
// function name and a function-relative offset
IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
= FuncMap.find(SecAddr + RelOffset);
if (ContainingFunc.valid()) {
// Re-base the relocation to make it relative to the target function
RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
RelOffset,
RelType,
RelAddend,
true));
} else {
Relocations[SymName].push_back(RelocationEntry(SecName,
RelOffset,
RelType,
RelAddend,
false));
}
}
}
return false;
}
void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
uint8_t *TargetAddr;
if (RE.IsFunctionRelative) {
StringMap<sys::MemoryBlock>::iterator ContainingFunc
= Functions.find(RE.Target);
assert(ContainingFunc != Functions.end()
&& "Function for relocation not found");
TargetAddr = reinterpret_cast<uint8_t*>(ContainingFunc->getValue().base()) +
RE.Offset;
} else {
// FIXME: Get the address of the target section and add that to RE.Offset
assert(0 && ("Non-function relocation not implemented yet!"));
}
switch (RE.Type) {
default:
assert(0 && ("Relocation type not implemented yet!"));
break;
case ELF::R_X86_64_64: {
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
*Target = Addr + RE.Addend;
break;
}
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S: {
uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
// FIXME: Handle the possibility of this assertion failing
assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000)) ||
(RE.Type == ELF::R_X86_64_32S &&
(Value & 0xFFFFFFFF00000000) == 0xFFFFFFFF00000000));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
*Target = TruncatedAddr;
break;
}
case ELF::R_X86_64_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
uint64_t RealOffset = *Placeholder +
reinterpret_cast<uint64_t>(Addr) +
RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
assert((RealOffset & 0xFFFFFFFF) == RealOffset);
uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
*Placeholder = TruncOffset;
break;
}
}
}
void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
uint8_t *TargetAddr;
if (RE.IsFunctionRelative) {
StringMap<sys::MemoryBlock>::iterator ContainingFunc
= Functions.find(RE.Target);
assert(ContainingFunc != Functions.end()
&& "Function for relocation not found");
TargetAddr = reinterpret_cast<uint8_t*>(
ContainingFunc->getValue().base()) + RE.Offset;
} else {
// FIXME: Get the address of the target section and add that to RE.Offset
assert(0 && ("Non-function relocation not implemented yet!"));
}
switch (RE.Type) {
case ELF::R_386_32: {
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
*Target = Addr + RE.Addend;
break;
}
case ELF::R_386_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
*Placeholder = RealOffset;
break;
}
default:
// There are other relocation types, but it appears these are the
// only ones currently used by the LLVM ELF object writer
assert(0 && ("Relocation type not implemented yet!"));
break;
}
}
void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
}
void RuntimeDyldELF::resolveRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
switch (Arch) {
case Triple::x86_64:
resolveX86_64Relocation(Name, Addr, RE);
break;
case Triple::x86:
resolveX86Relocation(Name, Addr, RE);
break;
case Triple::arm:
resolveArmRelocation(Name, Addr, RE);
break;
default:
assert(0 && "Unsupported CPU type!");
break;
}
}
void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
SymbolTable[Name] = Addr;
RelocationList &Relocs = Relocations[Name];
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
RelocationEntry &RE = Relocs[i];
resolveRelocation(Name, Addr, RE);
}
}
bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
} // namespace llvm

View File

@ -94,6 +94,66 @@ public:
virtual bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const = 0;
};
class RuntimeDyldELF : public RuntimeDyldImpl {
// For each symbol, keep a list of relocations based on it. Anytime
// its address is reassigned (the JIT re-compiled the function, e.g.),
// the relocations get re-resolved.
struct RelocationEntry {
// Function or section this relocation is contained in.
std::string Target;
// Offset into the target function or section for the relocation.
uint32_t Offset;
// Relocation type
uint32_t Type;
// Addend encoded in the instruction itself, if any.
int32_t Addend;
// Has the relocation been recalcuated as an offset within a function?
bool IsFunctionRelative;
// Has this relocation been resolved previously?
bool isResolved;
RelocationEntry(StringRef t,
uint32_t offset,
uint32_t type,
int32_t addend,
bool isFunctionRelative)
: Target(t)
, Offset(offset)
, Type(type)
, Addend(addend)
, IsFunctionRelative(isFunctionRelative)
, isResolved(false) { }
};
typedef SmallVector<RelocationEntry, 4> RelocationList;
StringMap<RelocationList> Relocations;
unsigned Arch;
void resolveX86_64Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
void resolveX86Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
void resolveArmRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
void resolveRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
public:
RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
bool loadObject(MemoryBuffer *InputBuffer);
void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
};
class RuntimeDyldMachO : public RuntimeDyldImpl {

View File

@ -1,4 +1,5 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: mcjit
@.LC0 = internal global [10 x i8] c"argc: %d\0A\00" ; <[10 x i8]*> [#uses=1]

View File

@ -1,5 +1,6 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; XFAIL: mcjit
define i32 @foo(i32 %X, i32 %Y, double %A) {
%cond212 = fcmp une double %A, 1.000000e+00 ; <i1> [#uses=1]

View File

@ -1,5 +1,6 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; XFAIL: mcjit
define i32 @main() {
call i32 @mylog( i32 4 ) ; <i32>:1 [#uses=0]

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {
; <label>:0

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; We were accidentally inverting the signedness of right shifts. Whoops.

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {
%X = fadd double 0.000000e+00, 1.000000e+00 ; <double> [#uses=1]

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
define i32 @bar(i8* %X) {

View File

@ -1,7 +1,8 @@
; This testcase should return with an exit code of 1.
;
; RUN: not lli %s
; RUN: not %lli %s
; XFAIL: arm
; XFAIL: mcjit
@test = global i64 0 ; <i64*> [#uses=1]

View File

@ -1,5 +1,6 @@
; RUN: lli %s test
; RUN: %lli %s test
; XFAIL: arm
; XFAIL: mcjit
declare i32 @puts(i8*)

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
target datalayout = "e-p:32:32"

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; Testcase distilled from 256.bzip2.

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; Testcase distilled from 256.bzip2.

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; This testcase failed to work because two variable sized allocas confused the

View File

@ -1,5 +1,6 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; XFAIL: mcjit
;
; Regression Test: EnvironmentTest.ll

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; This testcase exposes a bug in the local register allocator where it runs out

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
@A = global i32 0 ; <i32*> [#uses=1]

View File

@ -1,6 +1,7 @@
; PR672
; RUN: lli %s
; RUN: %lli %s
; XFAIL: arm
; XFAIL: mcjit-ia32
define i32 @main() {
%f = bitcast i32 (i32, i32*, i32)* @check_tail to i32* ; <i32*> [#uses=1]

View File

@ -1,4 +1,4 @@
; RUN: lli -force-interpreter %s
; RUN: %lli -force-interpreter %s
; PR1836
define i32 @main() {

View File

@ -1,4 +1,4 @@
; RUN: lli -force-interpreter=true %s | grep 1
; RUN: %lli -force-interpreter=true %s | grep 1
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:32:32"
target triple = "i686-pc-linux-gnu"

View File

@ -1,4 +1,4 @@
; RUN: lli -force-interpreter=true %s
; RUN: %lli -force-interpreter=true %s
define i32 @main() {
%a = add i32 0, undef

View File

@ -1,4 +1,4 @@
; RUN: lli -force-interpreter=true %s | grep 40091eb8
; RUN: %lli -force-interpreter=true %s | grep 40091eb8
;
define i32 @test(double %x) {
entry:

View File

@ -1,5 +1,6 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; XFAIL: mcjit
@.LC0 = internal global [12 x i8] c"Hello World\00" ; <[12 x i8]*> [#uses=1]

View File

@ -1,5 +1,6 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; XFAIL: mcjit
@X = global i32 7 ; <i32*> [#uses=0]
@msg = internal global [13 x i8] c"Hello World\0A\00" ; <[13 x i8]*> [#uses=1]

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {
ret i32 0

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
define i32 @bar() {

View File

@ -1,5 +1,6 @@
; RUN: lli -disable-lazy-compilation=false %s
; RUN: %lli -disable-lazy-compilation=false %s
; XFAIL: arm
; XFAIL: mcjit
define i32 @main() nounwind {
entry:

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {
%A = add i8 0, 12 ; <i8> [#uses=1]

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; test unconditional branch
define i32 @main() {

View File

@ -1,5 +1,6 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; XFAIL: mcjit
declare void @exit(i32)

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @foo() {
ret i32 0

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; This tests to make sure that we can evaluate weird constant expressions

View File

@ -1,4 +1,5 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: mcjit
define double @test(double* %DP, double %Arg) {
%D = load double* %DP ; <double> [#uses=1]

View File

@ -1,5 +1,6 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; XFAIL: arm
; XFAIL: mcjit-ia32
define void @test(i8* %P, i16* %P.upgrd.1, i32* %P.upgrd.2, i64* %P.upgrd.3) {
%V = load i8* %P ; <i8> [#uses=1]

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {
%A = and i8 4, 8 ; <i8> [#uses=2]

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {
; <label>:0

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; test phi node
@Y = global i32 6 ; <i32*> [#uses=1]

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
; test return instructions
define void @test1() {

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {
%int1 = add i32 0, 0 ; <i32> [#uses=6]

View File

@ -1,4 +1,4 @@
; RUN: lli %s > /dev/null
; RUN: %lli %s > /dev/null
define i32 @main() {
%shamt = add i8 0, 1 ; <i8> [#uses=8]

View File

@ -141,6 +141,29 @@ for line in open(os.path.join(config.llvm_obj_root, 'test', 'site.exp')):
if m:
site_exp[m.group(1)] = m.group(2)
# Provide target_triple for use in XFAIL and XTARGET.
config.target_triple = site_exp['target_triplet']
# When running under valgrind, we mangle '-vg' or '-vg_leak' onto the end of the
# triple so we can check it with XFAIL and XTARGET.
config.target_triple += lit.valgrindTriple
# Process jit implementation option
jit_impl_cfg = lit.params.get('jit_impl', None)
if jit_impl_cfg == 'mcjit':
# When running with mcjit, mangle -mcjit into target triple
# and add -use-mcjit flag to lli invocation
if 'i686' in config.target_triple:
config.target_triple += jit_impl_cfg + '-ia32'
elif 'x86_64' in config.target_triple:
config.target_triple += jit_impl_cfg + '-ia64'
else:
config.target_triple += jit_impl_cfg
config.substitutions.append( ('%lli', 'lli -use-mcjit') )
else:
config.substitutions.append( ('%lli', 'lli') )
# Add substitutions.
for sub in ['link', 'shlibext', 'ocamlopt', 'llvmshlibdir']:
config.substitutions.append(('%' + sub, site_exp[sub]))
@ -197,13 +220,6 @@ for pattern in [r"\bbugpoint\b(?!-)", r"(?<!/|-)\bclang\b(?!-)",
excludes = []
# Provide target_triple for use in XFAIL and XTARGET.
config.target_triple = site_exp['target_triplet']
# When running under valgrind, we mangle '-vg' or '-vg_leak' onto the end of the
# triple so we can check it with XFAIL and XTARGET.
config.target_triple += lit.valgrindTriple
# Provide llvm_supports_target for use in local configs.
targets = set(site_exp["TARGETS_TO_BUILD"].split())
def llvm_supports_target(name):

View File

@ -210,9 +210,11 @@ int main(int argc, char **argv, char * const *envp) {
if (!TargetTriple.empty())
Mod->setTargetTriple(Triple::normalize(TargetTriple));
// Enable MCJIT, if desired.
if (UseMCJIT)
// Enable MCJIT if desired.
if (UseMCJIT && !ForceInterpreter) {
builder.setUseMCJIT(true);
builder.setJITMemoryManager(JITMemoryManager::CreateDefaultMemManager());
}
CodeGenOpt::Level OLvl = CodeGenOpt::Default;
switch (OptLevel) {