mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-05 17:39:16 +00:00
Added major new capabilities to scheduler (only BURR for now) to support physical register dependency. The BURR scheduler can now backtrace and duplicate instructions in order to avoid "expensive / impossible to copy" values (e.g. status flag EFLAGS for x86) from being clobbered.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42284 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
a3602685b3
commit
a6fb1b6743
@ -79,12 +79,13 @@ namespace llvm {
|
||||
/// SDep - Scheduling dependency. It keeps track of dependent nodes,
|
||||
/// cost of the depdenency, etc.
|
||||
struct SDep {
|
||||
SUnit *Dep; // Dependent - either a predecessor or a successor.
|
||||
bool isCtrl; // True iff it's a control dependency.
|
||||
unsigned PhyReg; // If non-zero, this dep is a phy register dependency.
|
||||
int Cost; // Cost of the dependency.
|
||||
SDep(SUnit *d, bool c, unsigned r, int t)
|
||||
: Dep(d), isCtrl(c), PhyReg(r), Cost(t) {}
|
||||
SUnit *Dep; // Dependent - either a predecessor or a successor.
|
||||
unsigned Reg; // If non-zero, this dep is a phy register dependency.
|
||||
int Cost; // Cost of the dependency.
|
||||
bool isCtrl : 1; // True iff it's a control dependency.
|
||||
bool isSpecial : 1; // True iff it's a special ctrl dep added during sched.
|
||||
SDep(SUnit *d, unsigned r, int t, bool c, bool s)
|
||||
: Dep(d), Reg(r), Cost(t), isCtrl(c), isSpecial(s) {}
|
||||
};
|
||||
|
||||
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
|
||||
@ -92,6 +93,8 @@ namespace llvm {
|
||||
struct SUnit {
|
||||
SDNode *Node; // Representative node.
|
||||
SmallVector<SDNode*,4> FlaggedNodes;// All nodes flagged to Node.
|
||||
unsigned InstanceNo; // Instance#. One SDNode can be multiple
|
||||
// SUnit due to cloning.
|
||||
|
||||
// Preds/Succs - The SUnits before/after us in the graph. The boolean value
|
||||
// is true if the edge is a token chain edge, false if it is a value edge.
|
||||
@ -103,6 +106,8 @@ namespace llvm {
|
||||
typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
|
||||
typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
|
||||
|
||||
unsigned NodeNum; // Entry # of node in the node vector.
|
||||
unsigned short Latency; // Node latency.
|
||||
short NumPreds; // # of preds.
|
||||
short NumSuccs; // # of sucss.
|
||||
short NumPredsLeft; // # of preds not scheduled.
|
||||
@ -111,42 +116,94 @@ namespace llvm {
|
||||
short NumChainSuccsLeft; // # of chain succs not scheduled.
|
||||
bool isTwoAddress : 1; // Is a two-address instruction.
|
||||
bool isCommutable : 1; // Is a commutable instruction.
|
||||
bool hasImplicitDefs : 1; // Has implicit physical reg defs.
|
||||
bool isPending : 1; // True once pending.
|
||||
bool isAvailable : 1; // True once available.
|
||||
bool isScheduled : 1; // True once scheduled.
|
||||
unsigned short Latency; // Node latency.
|
||||
unsigned CycleBound; // Upper/lower cycle to be scheduled at.
|
||||
unsigned Cycle; // Once scheduled, the cycle of the op.
|
||||
unsigned Depth; // Node depth;
|
||||
unsigned Height; // Node height;
|
||||
unsigned NodeNum; // Entry # of node in the node vector.
|
||||
|
||||
SUnit(SDNode *node, unsigned nodenum)
|
||||
: Node(node), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
|
||||
: Node(node), InstanceNo(0), NodeNum(nodenum), Latency(0),
|
||||
NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
|
||||
NumChainPredsLeft(0), NumChainSuccsLeft(0),
|
||||
isTwoAddress(false), isCommutable(false),
|
||||
isTwoAddress(false), isCommutable(false), hasImplicitDefs(false),
|
||||
isPending(false), isAvailable(false), isScheduled(false),
|
||||
Latency(0), CycleBound(0), Cycle(0), Depth(0), Height(0),
|
||||
NodeNum(nodenum) {}
|
||||
|
||||
CycleBound(0), Cycle(0), Depth(0), Height(0) {}
|
||||
|
||||
/// addPred - This adds the specified node as a pred of the current node if
|
||||
/// not already. This returns true if this is a new pred.
|
||||
bool addPred(SUnit *N, bool isCtrl, unsigned PhyReg = 0, int Cost = 1) {
|
||||
bool addPred(SUnit *N, bool isCtrl, bool isSpecial,
|
||||
unsigned PhyReg = 0, int Cost = 1) {
|
||||
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
|
||||
if (Preds[i].Dep == N && Preds[i].isCtrl == isCtrl)
|
||||
if (Preds[i].Dep == N &&
|
||||
Preds[i].isCtrl == isCtrl && Preds[i].isSpecial == isSpecial)
|
||||
return false;
|
||||
Preds.push_back(SDep(N, isCtrl, PhyReg, Cost));
|
||||
Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isSpecial));
|
||||
N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl, isSpecial));
|
||||
if (isCtrl) {
|
||||
if (!N->isScheduled)
|
||||
++NumChainPredsLeft;
|
||||
if (!isScheduled)
|
||||
++N->NumChainSuccsLeft;
|
||||
} else {
|
||||
++NumPreds;
|
||||
++N->NumSuccs;
|
||||
if (!N->isScheduled)
|
||||
++NumPredsLeft;
|
||||
if (!isScheduled)
|
||||
++N->NumSuccsLeft;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// addSucc - This adds the specified node as a succ of the current node if
|
||||
/// not already. This returns true if this is a new succ.
|
||||
bool addSucc(SUnit *N, bool isCtrl, unsigned PhyReg = 0, int Cost = 1) {
|
||||
bool removePred(SUnit *N, bool isCtrl, bool isSpecial) {
|
||||
for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
|
||||
I != E; ++I)
|
||||
if (I->Dep == N && I->isCtrl == isCtrl && I->isSpecial == isSpecial) {
|
||||
bool FoundSucc = false;
|
||||
for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
|
||||
EE = N->Succs.end(); II != EE; ++II)
|
||||
if (II->Dep == this &&
|
||||
II->isCtrl == isCtrl && II->isSpecial == isSpecial) {
|
||||
FoundSucc = true;
|
||||
N->Succs.erase(II);
|
||||
break;
|
||||
}
|
||||
assert(FoundSucc && "Mismatching preds / succs lists!");
|
||||
Preds.erase(I);
|
||||
if (isCtrl) {
|
||||
if (!N->isScheduled)
|
||||
--NumChainPredsLeft;
|
||||
if (!isScheduled)
|
||||
--NumChainSuccsLeft;
|
||||
} else {
|
||||
--NumPreds;
|
||||
--N->NumSuccs;
|
||||
if (!N->isScheduled)
|
||||
--NumPredsLeft;
|
||||
if (!isScheduled)
|
||||
--N->NumSuccsLeft;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool isPred(SUnit *N) {
|
||||
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
|
||||
if (Preds[i].Dep == N)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool isSucc(SUnit *N) {
|
||||
for (unsigned i = 0, e = Succs.size(); i != e; ++i)
|
||||
if (Succs[i].Dep == N && Succs[i].isCtrl == isCtrl)
|
||||
return false;
|
||||
Succs.push_back(SDep(N, isCtrl, PhyReg, Cost));
|
||||
return true;
|
||||
if (Succs[i].Dep == N)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
void dump(const SelectionDAG *G) const;
|
||||
@ -165,20 +222,27 @@ namespace llvm {
|
||||
public:
|
||||
virtual ~SchedulingPriorityQueue() {}
|
||||
|
||||
virtual void initNodes(DenseMap<SDNode*, SUnit*> &SUMap,
|
||||
virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &SUMap,
|
||||
std::vector<SUnit> &SUnits) = 0;
|
||||
virtual void addNode(const SUnit *SU) = 0;
|
||||
virtual void updateNode(const SUnit *SU) = 0;
|
||||
virtual void releaseState() = 0;
|
||||
|
||||
|
||||
virtual unsigned size() const = 0;
|
||||
virtual bool empty() const = 0;
|
||||
virtual void push(SUnit *U) = 0;
|
||||
|
||||
virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
|
||||
virtual SUnit *pop() = 0;
|
||||
|
||||
virtual void remove(SUnit *SU) = 0;
|
||||
|
||||
/// ScheduledNode - As each node is scheduled, this method is invoked. This
|
||||
/// allows the priority function to adjust the priority of node that have
|
||||
/// already been emitted.
|
||||
virtual void ScheduledNode(SUnit *Node) {}
|
||||
|
||||
virtual void UnscheduledNode(SUnit *Node) {}
|
||||
};
|
||||
|
||||
class ScheduleDAG {
|
||||
@ -192,7 +256,8 @@ namespace llvm {
|
||||
MachineConstantPool *ConstPool; // Target constant pool
|
||||
std::vector<SUnit*> Sequence; // The schedule. Null SUnit*'s
|
||||
// represent noop instructions.
|
||||
DenseMap<SDNode*, SUnit*> SUnitMap; // SDNode to SUnit mapping (n -> 1).
|
||||
DenseMap<SDNode*, std::vector<SUnit*> > SUnitMap;
|
||||
// SDNode to SUnit mapping (n -> n).
|
||||
std::vector<SUnit> SUnits; // The scheduling units.
|
||||
SmallSet<SDNode*, 16> CommuteSet; // Nodes the should be commuted.
|
||||
|
||||
@ -232,6 +297,10 @@ namespace llvm {
|
||||
return &SUnits.back();
|
||||
}
|
||||
|
||||
/// Clone - Creates a clone of the specified SUnit. It does not copy the
|
||||
/// predecessors / successors info nor the temporary scheduling states.
|
||||
SUnit *Clone(SUnit *N);
|
||||
|
||||
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
|
||||
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
|
||||
/// together nodes with a single SUnit.
|
||||
@ -256,7 +325,8 @@ namespace llvm {
|
||||
/// VRBaseMap contains, for each already emitted node, the first virtual
|
||||
/// register number for the results of the node.
|
||||
///
|
||||
void EmitNode(SDNode *Node, DenseMap<SDOperand, unsigned> &VRBaseMap);
|
||||
void EmitNode(SDNode *Node, unsigned InstNo,
|
||||
DenseMap<SDOperand, unsigned> &VRBaseMap);
|
||||
|
||||
/// EmitNoop - Emit a noop instruction.
|
||||
///
|
||||
@ -264,7 +334,8 @@ namespace llvm {
|
||||
|
||||
/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
|
||||
/// implicit physical register output.
|
||||
void EmitCopyFromReg(SDNode *Node, unsigned ResNo, unsigned SrcReg,
|
||||
void EmitCopyFromReg(SDNode *Node, unsigned ResNo, unsigned InstNo,
|
||||
unsigned SrcReg,
|
||||
DenseMap<SDOperand, unsigned> &VRBaseMap);
|
||||
|
||||
void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
|
||||
|
@ -27,6 +27,65 @@
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
using namespace llvm;
|
||||
|
||||
|
||||
/// getPhysicalRegisterRegClass - Returns the Register Class of a physical
|
||||
/// register.
|
||||
static const TargetRegisterClass *getPhysicalRegisterRegClass(
|
||||
const MRegisterInfo *MRI,
|
||||
MVT::ValueType VT,
|
||||
unsigned reg) {
|
||||
assert(MRegisterInfo::isPhysicalRegister(reg) &&
|
||||
"reg must be a physical register");
|
||||
// Pick the register class of the right type that contains this physreg.
|
||||
for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
|
||||
E = MRI->regclass_end(); I != E; ++I)
|
||||
if ((*I)->hasType(VT) && (*I)->contains(reg))
|
||||
return *I;
|
||||
assert(false && "Couldn't find the register class");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/// CheckForPhysRegDependency - Check if the dependency between def and use of
|
||||
/// a specified operand is a physical register dependency. If so, returns the
|
||||
/// register and the cost of copying the register.
|
||||
static void CheckForPhysRegDependency(SDNode *Def, SDNode *Use, unsigned Op,
|
||||
const MRegisterInfo *MRI,
|
||||
const TargetInstrInfo *TII,
|
||||
unsigned &PhysReg, int &Cost) {
|
||||
if (Op != 2 || Use->getOpcode() != ISD::CopyToReg)
|
||||
return;
|
||||
|
||||
unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
|
||||
if (MRegisterInfo::isVirtualRegister(Reg))
|
||||
return;
|
||||
|
||||
unsigned ResNo = Use->getOperand(2).ResNo;
|
||||
if (Def->isTargetOpcode()) {
|
||||
const TargetInstrDescriptor &II = TII->get(Def->getTargetOpcode());
|
||||
if (ResNo >= II.numDefs &&
|
||||
II.ImplicitDefs[ResNo - II.numDefs] == Reg) {
|
||||
PhysReg = Reg;
|
||||
const TargetRegisterClass *RC =
|
||||
getPhysicalRegisterRegClass(MRI, Def->getValueType(ResNo), Reg);
|
||||
Cost = RC->getCopyCost();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SUnit *ScheduleDAG::Clone(SUnit *Old) {
|
||||
SUnit *SU = NewSUnit(Old->Node);
|
||||
for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i)
|
||||
SU->FlaggedNodes.push_back(SU->FlaggedNodes[i]);
|
||||
SU->InstanceNo = SUnitMap[Old->Node].size();
|
||||
SU->Latency = Old->Latency;
|
||||
SU->isTwoAddress = Old->isTwoAddress;
|
||||
SU->isCommutable = Old->isCommutable;
|
||||
SU->hasImplicitDefs = Old->hasImplicitDefs;
|
||||
SUnitMap[Old->Node].push_back(SU);
|
||||
return SU;
|
||||
}
|
||||
|
||||
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
|
||||
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
|
||||
/// together nodes with a single SUnit.
|
||||
@ -44,7 +103,7 @@ void ScheduleDAG::BuildSchedUnits() {
|
||||
continue;
|
||||
|
||||
// If this node has already been processed, stop now.
|
||||
if (SUnitMap[NI]) continue;
|
||||
if (SUnitMap[NI].size()) continue;
|
||||
|
||||
SUnit *NodeSUnit = NewSUnit(NI);
|
||||
|
||||
@ -59,7 +118,7 @@ void ScheduleDAG::BuildSchedUnits() {
|
||||
do {
|
||||
N = N->getOperand(N->getNumOperands()-1).Val;
|
||||
NodeSUnit->FlaggedNodes.push_back(N);
|
||||
SUnitMap[N] = NodeSUnit;
|
||||
SUnitMap[N].push_back(NodeSUnit);
|
||||
} while (N->getNumOperands() &&
|
||||
N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
|
||||
std::reverse(NodeSUnit->FlaggedNodes.begin(),
|
||||
@ -79,7 +138,7 @@ void ScheduleDAG::BuildSchedUnits() {
|
||||
if (FlagVal.isOperand(*UI)) {
|
||||
HasFlagUse = true;
|
||||
NodeSUnit->FlaggedNodes.push_back(N);
|
||||
SUnitMap[N] = NodeSUnit;
|
||||
SUnitMap[N].push_back(NodeSUnit);
|
||||
N = *UI;
|
||||
break;
|
||||
}
|
||||
@ -89,7 +148,7 @@ void ScheduleDAG::BuildSchedUnits() {
|
||||
// Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
|
||||
// Update the SUnit
|
||||
NodeSUnit->Node = N;
|
||||
SUnitMap[N] = NodeSUnit;
|
||||
SUnitMap[N].push_back(NodeSUnit);
|
||||
|
||||
// Compute the latency for the node. We use the sum of the latencies for
|
||||
// all nodes flagged together into this SUnit.
|
||||
@ -125,13 +184,16 @@ void ScheduleDAG::BuildSchedUnits() {
|
||||
|
||||
if (MainNode->isTargetOpcode()) {
|
||||
unsigned Opc = MainNode->getTargetOpcode();
|
||||
for (unsigned i = 0, ee = TII->getNumOperands(Opc); i != ee; ++i) {
|
||||
if (TII->getOperandConstraint(Opc, i, TOI::TIED_TO) != -1) {
|
||||
const TargetInstrDescriptor &TID = TII->get(Opc);
|
||||
if (TID.ImplicitDefs)
|
||||
SU->hasImplicitDefs = true;
|
||||
for (unsigned i = 0; i != TID.numOperands; ++i) {
|
||||
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
|
||||
SU->isTwoAddress = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (TII->isCommutableInstr(Opc))
|
||||
if (TID.Flags & M_COMMUTABLE)
|
||||
SU->isCommutable = true;
|
||||
}
|
||||
|
||||
@ -141,34 +203,25 @@ void ScheduleDAG::BuildSchedUnits() {
|
||||
|
||||
for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
|
||||
SDNode *N = SU->FlaggedNodes[n];
|
||||
if (N->isTargetOpcode() && TII->getImplicitDefs(N->getTargetOpcode()))
|
||||
SU->hasImplicitDefs = true;
|
||||
|
||||
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
||||
SDNode *OpN = N->getOperand(i).Val;
|
||||
if (isPassiveNode(OpN)) continue; // Not scheduled.
|
||||
SUnit *OpSU = SUnitMap[OpN];
|
||||
SUnit *OpSU = SUnitMap[OpN].front();
|
||||
assert(OpSU && "Node has no SUnit!");
|
||||
if (OpSU == SU) continue; // In the same group.
|
||||
|
||||
MVT::ValueType OpVT = N->getOperand(i).getValueType();
|
||||
assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
|
||||
bool isChain = OpVT == MVT::Other;
|
||||
|
||||
if (SU->addPred(OpSU, isChain)) {
|
||||
if (!isChain) {
|
||||
SU->NumPreds++;
|
||||
SU->NumPredsLeft++;
|
||||
} else {
|
||||
SU->NumChainPredsLeft++;
|
||||
}
|
||||
}
|
||||
if (OpSU->addSucc(SU, isChain)) {
|
||||
if (!isChain) {
|
||||
OpSU->NumSuccs++;
|
||||
OpSU->NumSuccsLeft++;
|
||||
} else {
|
||||
OpSU->NumChainSuccsLeft++;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned PhysReg = 0;
|
||||
int Cost = 1;
|
||||
// Determine if this is a physical register dependency.
|
||||
CheckForPhysRegDependency(OpN, N, i, MRI, TII, PhysReg, Cost);
|
||||
SU->addPred(OpSU, isChain, false, PhysReg, Cost);
|
||||
}
|
||||
}
|
||||
|
||||
@ -200,7 +253,7 @@ void ScheduleDAG::CalculateDepths() {
|
||||
|
||||
void ScheduleDAG::CalculateHeights() {
|
||||
std::vector<std::pair<SUnit*, unsigned> > WorkList;
|
||||
SUnit *Root = SUnitMap[DAG.getRoot().Val];
|
||||
SUnit *Root = SUnitMap[DAG.getRoot().Val].front();
|
||||
WorkList.push_back(std::make_pair(Root, 0U));
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
@ -254,27 +307,14 @@ static const TargetRegisterClass *getInstrOperandRegClass(
|
||||
? TII->getPointerRegClass() : MRI->getRegClass(toi.RegClass);
|
||||
}
|
||||
|
||||
// Returns the Register Class of a physical register
|
||||
static const TargetRegisterClass *getPhysicalRegisterRegClass(
|
||||
const MRegisterInfo *MRI,
|
||||
MVT::ValueType VT,
|
||||
unsigned reg) {
|
||||
assert(MRegisterInfo::isPhysicalRegister(reg) &&
|
||||
"reg must be a physical register");
|
||||
// Pick the register class of the right type that contains this physreg.
|
||||
for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
|
||||
E = MRI->regclass_end(); I != E; ++I)
|
||||
if ((*I)->hasType(VT) && (*I)->contains(reg))
|
||||
return *I;
|
||||
assert(false && "Couldn't find the register class");
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ScheduleDAG::EmitCopyFromReg(SDNode *Node, unsigned ResNo, unsigned SrcReg,
|
||||
void ScheduleDAG::EmitCopyFromReg(SDNode *Node, unsigned ResNo,
|
||||
unsigned InstanceNo, unsigned SrcReg,
|
||||
DenseMap<SDOperand, unsigned> &VRBaseMap) {
|
||||
unsigned VRBase = 0;
|
||||
if (MRegisterInfo::isVirtualRegister(SrcReg)) {
|
||||
// Just use the input register directly!
|
||||
if (InstanceNo > 0)
|
||||
VRBaseMap.erase(SDOperand(Node, ResNo));
|
||||
bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,ResNo),SrcReg));
|
||||
assert(isNew && "Node emitted out of order - early");
|
||||
return;
|
||||
@ -282,32 +322,54 @@ void ScheduleDAG::EmitCopyFromReg(SDNode *Node, unsigned ResNo, unsigned SrcReg,
|
||||
|
||||
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
|
||||
// the CopyToReg'd destination register instead of creating a new vreg.
|
||||
bool MatchReg = true;
|
||||
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
|
||||
UI != E; ++UI) {
|
||||
SDNode *Use = *UI;
|
||||
bool Match = true;
|
||||
if (Use->getOpcode() == ISD::CopyToReg &&
|
||||
Use->getOperand(2).Val == Node &&
|
||||
Use->getOperand(2).ResNo == ResNo) {
|
||||
unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
|
||||
if (MRegisterInfo::isVirtualRegister(DestReg)) {
|
||||
VRBase = DestReg;
|
||||
break;
|
||||
Match = false;
|
||||
} else if (DestReg != SrcReg)
|
||||
Match = false;
|
||||
} else {
|
||||
for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
|
||||
SDOperand Op = Use->getOperand(i);
|
||||
if (Op.Val != Node)
|
||||
continue;
|
||||
MVT::ValueType VT = Node->getValueType(Op.ResNo);
|
||||
if (VT != MVT::Other && VT != MVT::Flag)
|
||||
Match = false;
|
||||
}
|
||||
}
|
||||
MatchReg &= Match;
|
||||
if (VRBase)
|
||||
break;
|
||||
}
|
||||
|
||||
// Figure out the register class to create for the destreg.
|
||||
const TargetRegisterClass *TRC = 0;
|
||||
if (VRBase) {
|
||||
// Figure out the register class to create for the destreg.
|
||||
if (VRBase)
|
||||
TRC = RegMap->getRegClass(VRBase);
|
||||
} else {
|
||||
else
|
||||
TRC = getPhysicalRegisterRegClass(MRI, Node->getValueType(ResNo), SrcReg);
|
||||
|
||||
|
||||
// If all uses are reading from the src physical register and copying the
|
||||
// register is either impossible or very expensive, then don't create a copy.
|
||||
if (MatchReg && TRC->getCopyCost() < 0) {
|
||||
VRBase = SrcReg;
|
||||
} else {
|
||||
// Create the reg, emit the copy.
|
||||
VRBase = RegMap->createVirtualRegister(TRC);
|
||||
MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
|
||||
}
|
||||
MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
|
||||
|
||||
if (InstanceNo > 0)
|
||||
VRBaseMap.erase(SDOperand(Node, ResNo));
|
||||
bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,ResNo), VRBase));
|
||||
assert(isNew && "Node emitted out of order - early");
|
||||
}
|
||||
@ -611,7 +673,7 @@ void ScheduleDAG::EmitSubregNode(SDNode *Node,
|
||||
|
||||
/// EmitNode - Generate machine code for an node and needed dependencies.
|
||||
///
|
||||
void ScheduleDAG::EmitNode(SDNode *Node,
|
||||
void ScheduleDAG::EmitNode(SDNode *Node, unsigned InstanceNo,
|
||||
DenseMap<SDOperand, unsigned> &VRBaseMap) {
|
||||
// If machine instruction
|
||||
if (Node->isTargetOpcode()) {
|
||||
@ -677,7 +739,7 @@ void ScheduleDAG::EmitNode(SDNode *Node,
|
||||
for (unsigned i = II.numDefs; i < NumResults; ++i) {
|
||||
unsigned Reg = II.ImplicitDefs[i - II.numDefs];
|
||||
if (Node->hasAnyUseOfValue(i))
|
||||
EmitCopyFromReg(Node, i, Reg, VRBaseMap);
|
||||
EmitCopyFromReg(Node, i, InstanceNo, Reg, VRBaseMap);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -713,7 +775,7 @@ void ScheduleDAG::EmitNode(SDNode *Node,
|
||||
}
|
||||
case ISD::CopyFromReg: {
|
||||
unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
||||
EmitCopyFromReg(Node, 0, SrcReg, VRBaseMap);
|
||||
EmitCopyFromReg(Node, 0, InstanceNo, SrcReg, VRBaseMap);
|
||||
break;
|
||||
}
|
||||
case ISD::INLINEASM: {
|
||||
@ -802,9 +864,9 @@ void ScheduleDAG::EmitSchedule() {
|
||||
DenseMap<SDOperand, unsigned> VRBaseMap;
|
||||
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
||||
if (SUnit *SU = Sequence[i]) {
|
||||
for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
|
||||
EmitNode(SU->FlaggedNodes[j], VRBaseMap);
|
||||
EmitNode(SU->Node, VRBaseMap);
|
||||
for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; ++j)
|
||||
EmitNode(SU->FlaggedNodes[j], SU->InstanceNo, VRBaseMap);
|
||||
EmitNode(SU->Node, SU->InstanceNo, VRBaseMap);
|
||||
} else {
|
||||
// Null SUnit* is a noop.
|
||||
EmitNoop();
|
||||
@ -869,7 +931,10 @@ void SUnit::dumpAll(const SelectionDAG *G) const {
|
||||
cerr << " ch #";
|
||||
else
|
||||
cerr << " val #";
|
||||
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")\n";
|
||||
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
|
||||
if (I->isSpecial)
|
||||
cerr << " *";
|
||||
cerr << "\n";
|
||||
}
|
||||
}
|
||||
if (Succs.size() != 0) {
|
||||
@ -880,7 +945,10 @@ void SUnit::dumpAll(const SelectionDAG *G) const {
|
||||
cerr << " ch #";
|
||||
else
|
||||
cerr << " val #";
|
||||
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")\n";
|
||||
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
|
||||
if (I->isSpecial)
|
||||
cerr << " *";
|
||||
cerr << "\n";
|
||||
}
|
||||
}
|
||||
cerr << "\n";
|
||||
|
@ -168,7 +168,7 @@ void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
/// schedulers.
|
||||
void ScheduleDAGList::ListScheduleTopDown() {
|
||||
unsigned CurCycle = 0;
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
|
||||
|
||||
// All leaves to Available queue.
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
@ -328,12 +328,24 @@ public:
|
||||
LatencyPriorityQueue() : Queue(latency_sort(this)) {
|
||||
}
|
||||
|
||||
void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
|
||||
void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
|
||||
std::vector<SUnit> &sunits) {
|
||||
SUnits = &sunits;
|
||||
// Calculate node priorities.
|
||||
CalculatePriorities();
|
||||
}
|
||||
|
||||
void addNode(const SUnit *SU) {
|
||||
Latencies.resize(SUnits->size(), -1);
|
||||
NumNodesSolelyBlocking.resize(SUnits->size(), 0);
|
||||
CalcLatency(*SU);
|
||||
}
|
||||
|
||||
void updateNode(const SUnit *SU) {
|
||||
Latencies[SU->NodeNum] = -1;
|
||||
CalcLatency(*SU);
|
||||
}
|
||||
|
||||
void releaseState() {
|
||||
SUnits = 0;
|
||||
Latencies.clear();
|
||||
@ -349,6 +361,8 @@ public:
|
||||
return NumNodesSolelyBlocking[NodeNum];
|
||||
}
|
||||
|
||||
unsigned size() const { return Queue.size(); }
|
||||
|
||||
bool empty() const { return Queue.empty(); }
|
||||
|
||||
virtual void push(SUnit *U) {
|
||||
@ -368,22 +382,10 @@ public:
|
||||
return V;
|
||||
}
|
||||
|
||||
// ScheduledNode - As nodes are scheduled, we look to see if there are any
|
||||
// successor nodes that have a single unscheduled predecessor. If so, that
|
||||
// single predecessor has a higher priority, since scheduling it will make
|
||||
// the node available.
|
||||
void ScheduledNode(SUnit *Node);
|
||||
|
||||
private:
|
||||
void CalculatePriorities();
|
||||
int CalcLatency(const SUnit &SU);
|
||||
void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
|
||||
SUnit *getSingleUnscheduledPred(SUnit *SU);
|
||||
|
||||
/// RemoveFromPriorityQueue - This is a really inefficient way to remove a
|
||||
/// node from a priority queue. We should roll our own heap to make this
|
||||
/// better or something.
|
||||
void RemoveFromPriorityQueue(SUnit *SU) {
|
||||
/// remove - This is a really inefficient way to remove a node from a
|
||||
/// priority queue. We should roll our own heap to make this better or
|
||||
/// something.
|
||||
void remove(SUnit *SU) {
|
||||
std::vector<SUnit*> Temp;
|
||||
|
||||
assert(!Queue.empty() && "Not in queue!");
|
||||
@ -400,6 +402,18 @@ private:
|
||||
for (unsigned i = 0, e = Temp.size(); i != e; ++i)
|
||||
Queue.push(Temp[i]);
|
||||
}
|
||||
|
||||
// ScheduledNode - As nodes are scheduled, we look to see if there are any
|
||||
// successor nodes that have a single unscheduled predecessor. If so, that
|
||||
// single predecessor has a higher priority, since scheduling it will make
|
||||
// the node available.
|
||||
void ScheduledNode(SUnit *Node);
|
||||
|
||||
private:
|
||||
void CalculatePriorities();
|
||||
int CalcLatency(const SUnit &SU);
|
||||
void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
|
||||
SUnit *getSingleUnscheduledPred(SUnit *SU);
|
||||
};
|
||||
}
|
||||
|
||||
@ -507,7 +521,7 @@ void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
|
||||
|
||||
// Okay, we found a single predecessor that is available, but not scheduled.
|
||||
// Since it is available, it must be in the priority queue. First remove it.
|
||||
RemoveFromPriorityQueue(OnlyAvailablePred);
|
||||
remove(OnlyAvailablePred);
|
||||
|
||||
// Reinsert the node into the priority queue, which recomputes its
|
||||
// NumNodesSolelyBlocking value.
|
||||
|
@ -25,6 +25,7 @@
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include <climits>
|
||||
#include <queue>
|
||||
@ -52,9 +53,16 @@ private:
|
||||
bool isBottomUp;
|
||||
|
||||
/// AvailableQueue - The priority queue to use for the available SUnits.
|
||||
///
|
||||
///a
|
||||
SchedulingPriorityQueue *AvailableQueue;
|
||||
|
||||
/// LiveRegs / LiveRegDefs - A set of physical registers and their definition
|
||||
/// that are "live". These nodes must be scheduled before any other nodes that
|
||||
/// modifies the registers can be scheduled.
|
||||
SmallSet<unsigned, 4> LiveRegs;
|
||||
std::vector<SUnit*> LiveRegDefs;
|
||||
std::vector<unsigned> LiveRegCycles;
|
||||
|
||||
public:
|
||||
ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
|
||||
const TargetMachine &tm, bool isbottomup,
|
||||
@ -72,8 +80,13 @@ public:
|
||||
private:
|
||||
void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
|
||||
void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
|
||||
void CapturePred(SUnit *PredSU, SUnit *SU, bool isChain);
|
||||
void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
|
||||
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
||||
void UnscheduleNodeBottomUp(SUnit *SU);
|
||||
SUnit *BackTrackBottomUp(SUnit*, unsigned, unsigned&, bool&);
|
||||
SUnit *CopyAndMoveSuccessors(SUnit *SU);
|
||||
bool DelayForLiveRegsBottomUp(SUnit *SU, unsigned &CurCycle);
|
||||
void ListScheduleTopDown();
|
||||
void ListScheduleBottomUp();
|
||||
void CommuteNodesToReducePressure();
|
||||
@ -84,7 +97,10 @@ private:
|
||||
/// Schedule - Schedule the DAG using list scheduling.
|
||||
void ScheduleDAGRRList::Schedule() {
|
||||
DOUT << "********** List Scheduling **********\n";
|
||||
|
||||
|
||||
LiveRegDefs.resize(MRI->getNumRegs(), NULL);
|
||||
LiveRegCycles.resize(MRI->getNumRegs(), 0);
|
||||
|
||||
// Build scheduling units.
|
||||
BuildSchedUnits();
|
||||
|
||||
@ -130,7 +146,7 @@ void ScheduleDAGRRList::CommuteNodesToReducePressure() {
|
||||
continue;
|
||||
|
||||
SDNode *OpN = SU->Node->getOperand(j).Val;
|
||||
SUnit *OpSU = SUnitMap[OpN];
|
||||
SUnit *OpSU = SUnitMap[OpN][SU->InstanceNo];
|
||||
if (OpSU && OperandSeen.count(OpSU) == 1) {
|
||||
// Ok, so SU is not the last use of OpSU, but SU is two-address so
|
||||
// it will clobber OpSU. Try to commute SU if no other source operands
|
||||
@ -139,7 +155,7 @@ void ScheduleDAGRRList::CommuteNodesToReducePressure() {
|
||||
for (unsigned k = 0; k < NumOps; ++k) {
|
||||
if (k != j) {
|
||||
OpN = SU->Node->getOperand(k).Val;
|
||||
OpSU = SUnitMap[OpN];
|
||||
OpSU = SUnitMap[OpN][SU->InstanceNo];
|
||||
if (OpSU && OperandSeen.count(OpSU) == 1) {
|
||||
DoCommute = false;
|
||||
break;
|
||||
@ -178,9 +194,9 @@ void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
|
||||
PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
|
||||
|
||||
if (!isChain)
|
||||
PredSU->NumSuccsLeft--;
|
||||
--PredSU->NumSuccsLeft;
|
||||
else
|
||||
PredSU->NumChainSuccsLeft--;
|
||||
--PredSU->NumChainSuccsLeft;
|
||||
|
||||
#ifndef NDEBUG
|
||||
if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
|
||||
@ -209,19 +225,273 @@ void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
SU->Cycle = CurCycle;
|
||||
|
||||
AvailableQueue->ScheduledNode(SU);
|
||||
Sequence.push_back(SU);
|
||||
|
||||
// Bottom up: release predecessors
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
I != E; ++I) {
|
||||
ReleasePred(I->Dep, I->isCtrl, CurCycle);
|
||||
if (I->Cost < 0) {
|
||||
// This is a physical register dependency and it's impossible or
|
||||
// expensive to copy the register. Make sure nothing that can
|
||||
// clobber the register is scheduled between the predecessor and
|
||||
// this node.
|
||||
if (LiveRegs.insert(I->Reg)) {
|
||||
LiveRegDefs[I->Reg] = I->Dep;
|
||||
LiveRegCycles[I->Reg] = CurCycle;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Release all the implicit physical register defs that are live.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->Cost < 0) {
|
||||
if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
|
||||
LiveRegs.erase(I->Reg);
|
||||
assert(LiveRegDefs[I->Reg] == SU &&
|
||||
"Physical register dependency violated?");
|
||||
LiveRegDefs[I->Reg] = NULL;
|
||||
LiveRegCycles[I->Reg] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SU->isScheduled = true;
|
||||
}
|
||||
|
||||
/// isReady - True if node's lower cycle bound is less or equal to the current
|
||||
/// scheduling cycle. Always true if all nodes have uniform latency 1.
|
||||
static inline bool isReady(SUnit *SU, unsigned CurCycle) {
|
||||
return SU->CycleBound <= CurCycle;
|
||||
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
|
||||
/// unscheduled, incrcease the succ left count of its predecessors. Remove
|
||||
/// them from AvailableQueue if necessary.
|
||||
void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
|
||||
PredSU->CycleBound = 0;
|
||||
for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->Dep == SU)
|
||||
continue;
|
||||
PredSU->CycleBound = std::max(PredSU->CycleBound,
|
||||
I->Dep->Cycle + PredSU->Latency);
|
||||
}
|
||||
|
||||
if (PredSU->isAvailable) {
|
||||
PredSU->isAvailable = false;
|
||||
if (!PredSU->isPending)
|
||||
AvailableQueue->remove(PredSU);
|
||||
}
|
||||
|
||||
if (!isChain)
|
||||
++PredSU->NumSuccsLeft;
|
||||
else
|
||||
++PredSU->NumChainSuccsLeft;
|
||||
}
|
||||
|
||||
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
|
||||
/// its predecessor states to reflect the change.
|
||||
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
|
||||
DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
|
||||
DEBUG(SU->dump(&DAG));
|
||||
|
||||
AvailableQueue->UnscheduledNode(SU);
|
||||
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
CapturePred(I->Dep, SU, I->isCtrl);
|
||||
if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg]) {
|
||||
LiveRegs.erase(I->Reg);
|
||||
assert(LiveRegDefs[I->Reg] == I->Dep &&
|
||||
"Physical register dependency violated?");
|
||||
LiveRegDefs[I->Reg] = NULL;
|
||||
LiveRegCycles[I->Reg] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->Cost < 0) {
|
||||
if (LiveRegs.insert(I->Reg)) {
|
||||
assert(!LiveRegDefs[I->Reg] &&
|
||||
"Physical register dependency violated?");
|
||||
LiveRegDefs[I->Reg] = SU;
|
||||
}
|
||||
if (I->Dep->Cycle < LiveRegCycles[I->Reg])
|
||||
LiveRegCycles[I->Reg] = I->Dep->Cycle;
|
||||
}
|
||||
}
|
||||
|
||||
SU->Cycle = 0;
|
||||
SU->isScheduled = false;
|
||||
SU->isAvailable = true;
|
||||
AvailableQueue->push(SU);
|
||||
}
|
||||
|
||||
/// BackTrackBottomUp - Back track scheduling to a previous cycle specified in
|
||||
/// BTCycle in order to schedule a specific node. Returns the last unscheduled
|
||||
/// SUnit. Also returns if a successor is unscheduled in the process.
|
||||
SUnit *ScheduleDAGRRList::BackTrackBottomUp(SUnit *SU, unsigned BTCycle,
|
||||
unsigned &CurCycle, bool &SuccUnsched) {
|
||||
SuccUnsched = false;
|
||||
SUnit *OldSU = NULL;
|
||||
while (CurCycle > BTCycle) {
|
||||
OldSU = Sequence.back();
|
||||
Sequence.pop_back();
|
||||
if (SU->isSucc(OldSU))
|
||||
SuccUnsched = true;
|
||||
UnscheduleNodeBottomUp(OldSU);
|
||||
--CurCycle;
|
||||
}
|
||||
|
||||
|
||||
if (SU->isSucc(OldSU)) {
|
||||
assert(false && "Something is wrong!");
|
||||
abort();
|
||||
}
|
||||
|
||||
return OldSU;
|
||||
}
|
||||
|
||||
/// isSafeToCopy - True if the SUnit for the given SDNode can safely cloned,
|
||||
/// i.e. the node does not produce a flag, it does not read a flag and it does
|
||||
/// not have an incoming chain.
|
||||
static bool isSafeToCopy(SDNode *N) {
|
||||
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
|
||||
if (N->getValueType(i) == MVT::Flag)
|
||||
return false;
|
||||
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
||||
const SDOperand &Op = N->getOperand(i);
|
||||
MVT::ValueType VT = Op.Val->getValueType(Op.ResNo);
|
||||
if (VT == MVT::Other || VT == MVT::Flag)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
|
||||
/// successors to the newly created node.
|
||||
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
|
||||
SUnit *NewSU = Clone(SU);
|
||||
|
||||
// New SUnit has the exact same predecessors.
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
if (!I->isSpecial) {
|
||||
NewSU->addPred(I->Dep, I->isCtrl, false, I->Reg, I->Cost);
|
||||
NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
|
||||
}
|
||||
|
||||
// Only copy scheduled successors. Cut them from old node's successor
|
||||
// list and move them over.
|
||||
SmallVector<SDep*, 2> DelDeps;
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isSpecial)
|
||||
continue;
|
||||
NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
|
||||
if (I->Dep->isScheduled) {
|
||||
I->Dep->addPred(NewSU, I->isCtrl, false, I->Reg, I->Cost);
|
||||
DelDeps.push_back(I);
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
||||
SUnit *Succ = DelDeps[i]->Dep;
|
||||
bool isCtrl = DelDeps[i]->isCtrl;
|
||||
Succ->removePred(SU, isCtrl, false);
|
||||
}
|
||||
|
||||
AvailableQueue->updateNode(SU);
|
||||
AvailableQueue->addNode(NewSU);
|
||||
|
||||
return NewSU;
|
||||
}
|
||||
|
||||
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
|
||||
/// scheduling of the given node to satisfy live physical register dependencies.
|
||||
/// If the specific node is the last one that's available to schedule, do
|
||||
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
|
||||
bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU, unsigned &CurCycle){
|
||||
if (LiveRegs.empty())
|
||||
return false;
|
||||
|
||||
// If this node would clobber any "live" register, then it's not ready.
|
||||
// However, if this is the last "available" node, then we may have to
|
||||
// backtrack.
|
||||
bool MustSched = AvailableQueue->empty();
|
||||
SmallVector<unsigned, 4> LRegs;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->Cost < 0) {
|
||||
unsigned Reg = I->Reg;
|
||||
if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep)
|
||||
LRegs.push_back(Reg);
|
||||
for (const unsigned *Alias = MRI->getAliasSet(Reg);
|
||||
*Alias; ++Alias)
|
||||
if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep)
|
||||
LRegs.push_back(*Alias);
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
|
||||
SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
|
||||
if (!Node->isTargetOpcode())
|
||||
continue;
|
||||
const TargetInstrDescriptor &TID = TII->get(Node->getTargetOpcode());
|
||||
if (!TID.ImplicitDefs)
|
||||
continue;
|
||||
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
|
||||
if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU)
|
||||
LRegs.push_back(*Reg);
|
||||
for (const unsigned *Alias = MRI->getAliasSet(*Reg);
|
||||
*Alias; ++Alias)
|
||||
if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU)
|
||||
LRegs.push_back(*Alias);
|
||||
}
|
||||
}
|
||||
|
||||
if (MustSched && !LRegs.empty()) {
|
||||
// We have made a mistake by scheduling some nodes too early. Now we must
|
||||
// schedule the current node which will end up clobbering some live
|
||||
// registers that are expensive / impossible to copy. Try unscheduling
|
||||
// up to the point where it's safe to schedule the current node.
|
||||
unsigned LiveCycle = CurCycle;
|
||||
for (unsigned i = 0, e = LRegs.size(); i != e; ++i) {
|
||||
unsigned Reg = LRegs[i];
|
||||
unsigned LCycle = LiveRegCycles[Reg];
|
||||
LiveCycle = std::min(LiveCycle, LCycle);
|
||||
}
|
||||
|
||||
if (SU->CycleBound < LiveCycle) {
|
||||
bool SuccUnsched = false;
|
||||
SUnit *OldSU = BackTrackBottomUp(SU, LiveCycle, CurCycle, SuccUnsched);
|
||||
// Force the current node to be scheduled before the node that
|
||||
// requires the physical reg dep.
|
||||
if (OldSU->isAvailable) {
|
||||
OldSU->isAvailable = false;
|
||||
AvailableQueue->remove(OldSU);
|
||||
}
|
||||
SU->addPred(OldSU, true, true);
|
||||
// If a successor has been unscheduled, then it's not possible to
|
||||
// schedule the current node.
|
||||
return SuccUnsched;
|
||||
} else {
|
||||
// Try duplicating the nodes that produces these "expensive to copy"
|
||||
// values to break the dependency.
|
||||
for (unsigned i = 0, e = LRegs.size(); i != e; ++i) {
|
||||
unsigned Reg = LRegs[i];
|
||||
SUnit *LRDef = LiveRegDefs[Reg];
|
||||
if (isSafeToCopy(LRDef->Node)) {
|
||||
SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
|
||||
LiveRegDefs[Reg] = NewDef;
|
||||
NewDef->addPred(SU, true, true);
|
||||
SU->isAvailable = false;
|
||||
AvailableQueue->push(NewDef);
|
||||
} else {
|
||||
assert(false && "Expensive copying is required?");
|
||||
abort();
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return !LRegs.empty();
|
||||
}
|
||||
|
||||
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
||||
@ -229,30 +499,49 @@ static inline bool isReady(SUnit *SU, unsigned CurCycle) {
|
||||
void ScheduleDAGRRList::ListScheduleBottomUp() {
|
||||
unsigned CurCycle = 0;
|
||||
// Add root to Available queue.
|
||||
AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
|
||||
SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
|
||||
RootSU->isAvailable = true;
|
||||
AvailableQueue->push(RootSU);
|
||||
|
||||
// While Available queue is not empty, grab the node with the highest
|
||||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
SmallVector<SUnit*, 4> NotReady;
|
||||
while (!AvailableQueue->empty()) {
|
||||
SUnit *CurNode = AvailableQueue->pop();
|
||||
while (CurNode && !isReady(CurNode, CurCycle)) {
|
||||
NotReady.push_back(CurNode);
|
||||
CurNode = AvailableQueue->pop();
|
||||
SUnit *CurSU = AvailableQueue->pop();
|
||||
while (CurSU) {
|
||||
if (CurSU->CycleBound <= CurCycle)
|
||||
if (!DelayForLiveRegsBottomUp(CurSU, CurCycle))
|
||||
break;
|
||||
|
||||
// Verify node is still ready. It may not be in case the
|
||||
// scheduler has backtracked.
|
||||
if (CurSU->isAvailable) {
|
||||
CurSU->isPending = true;
|
||||
NotReady.push_back(CurSU);
|
||||
}
|
||||
CurSU = AvailableQueue->pop();
|
||||
}
|
||||
|
||||
// Add the nodes that aren't ready back onto the available list.
|
||||
AvailableQueue->push_all(NotReady);
|
||||
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
|
||||
NotReady[i]->isPending = false;
|
||||
if (NotReady[i]->isAvailable)
|
||||
AvailableQueue->push(NotReady[i]);
|
||||
}
|
||||
NotReady.clear();
|
||||
|
||||
if (CurNode != NULL)
|
||||
ScheduleNodeBottomUp(CurNode, CurCycle);
|
||||
CurCycle++;
|
||||
if (!CurSU)
|
||||
Sequence.push_back(0);
|
||||
else {
|
||||
ScheduleNodeBottomUp(CurSU, CurCycle);
|
||||
Sequence.push_back(CurSU);
|
||||
}
|
||||
++CurCycle;
|
||||
}
|
||||
|
||||
// Add entry node last
|
||||
if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
|
||||
Sequence.push_back(Entry);
|
||||
}
|
||||
|
||||
@ -291,9 +580,9 @@ void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
|
||||
SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
|
||||
|
||||
if (!isChain)
|
||||
SuccSU->NumPredsLeft--;
|
||||
--SuccSU->NumPredsLeft;
|
||||
else
|
||||
SuccSU->NumChainPredsLeft--;
|
||||
--SuccSU->NumChainPredsLeft;
|
||||
|
||||
#ifndef NDEBUG
|
||||
if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
|
||||
@ -320,7 +609,6 @@ void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
SU->Cycle = CurCycle;
|
||||
|
||||
AvailableQueue->ScheduledNode(SU);
|
||||
Sequence.push_back(SU);
|
||||
|
||||
// Top down: release successors
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
@ -333,7 +621,7 @@ void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
/// schedulers.
|
||||
void ScheduleDAGRRList::ListScheduleTopDown() {
|
||||
unsigned CurCycle = 0;
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
|
||||
|
||||
// All leaves to Available queue.
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
@ -346,24 +634,29 @@ void ScheduleDAGRRList::ListScheduleTopDown() {
|
||||
|
||||
// Emit the entry node first.
|
||||
ScheduleNodeTopDown(Entry, CurCycle);
|
||||
CurCycle++;
|
||||
Sequence.push_back(Entry);
|
||||
++CurCycle;
|
||||
|
||||
// While Available queue is not empty, grab the node with the highest
|
||||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
while (!AvailableQueue->empty()) {
|
||||
SUnit *CurNode = AvailableQueue->pop();
|
||||
while (CurNode && !isReady(CurNode, CurCycle)) {
|
||||
NotReady.push_back(CurNode);
|
||||
CurNode = AvailableQueue->pop();
|
||||
SUnit *CurSU = AvailableQueue->pop();
|
||||
while (CurSU && CurSU->CycleBound > CurCycle) {
|
||||
NotReady.push_back(CurSU);
|
||||
CurSU = AvailableQueue->pop();
|
||||
}
|
||||
|
||||
// Add the nodes that aren't ready back onto the available list.
|
||||
AvailableQueue->push_all(NotReady);
|
||||
NotReady.clear();
|
||||
|
||||
if (CurNode != NULL)
|
||||
ScheduleNodeTopDown(CurNode, CurCycle);
|
||||
if (!CurSU)
|
||||
Sequence.push_back(0);
|
||||
else {
|
||||
ScheduleNodeTopDown(CurSU, CurCycle);
|
||||
Sequence.push_back(CurSU);
|
||||
}
|
||||
CurCycle++;
|
||||
}
|
||||
|
||||
@ -431,14 +724,21 @@ namespace {
|
||||
RegReductionPriorityQueue() :
|
||||
Queue(SF(this)) {}
|
||||
|
||||
virtual void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
|
||||
virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
|
||||
std::vector<SUnit> &sunits) {}
|
||||
|
||||
virtual void addNode(const SUnit *SU) {}
|
||||
|
||||
virtual void updateNode(const SUnit *SU) {}
|
||||
|
||||
virtual void releaseState() {}
|
||||
|
||||
virtual unsigned getNodePriority(const SUnit *SU) const {
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned size() const { return Queue.size(); }
|
||||
|
||||
bool empty() const { return Queue.empty(); }
|
||||
|
||||
void push(SUnit *U) {
|
||||
@ -456,16 +756,33 @@ namespace {
|
||||
return V;
|
||||
}
|
||||
|
||||
virtual bool isDUOperand(const SUnit *SU1, const SUnit *SU2) {
|
||||
return false;
|
||||
/// remove - This is a really inefficient way to remove a node from a
|
||||
/// priority queue. We should roll our own heap to make this better or
|
||||
/// something.
|
||||
void remove(SUnit *SU) {
|
||||
std::vector<SUnit*> Temp;
|
||||
|
||||
assert(!Queue.empty() && "Not in queue!");
|
||||
while (Queue.top() != SU) {
|
||||
Temp.push_back(Queue.top());
|
||||
Queue.pop();
|
||||
assert(!Queue.empty() && "Not in queue!");
|
||||
}
|
||||
|
||||
// Remove the node from the PQ.
|
||||
Queue.pop();
|
||||
|
||||
// Add all the other nodes back.
|
||||
for (unsigned i = 0, e = Temp.size(); i != e; ++i)
|
||||
Queue.push(Temp[i]);
|
||||
}
|
||||
};
|
||||
|
||||
template<class SF>
|
||||
class VISIBILITY_HIDDEN BURegReductionPriorityQueue
|
||||
: public RegReductionPriorityQueue<SF> {
|
||||
// SUnitMap SDNode to SUnit mapping (n -> 1).
|
||||
DenseMap<SDNode*, SUnit*> *SUnitMap;
|
||||
// SUnitMap SDNode to SUnit mapping (n -> n).
|
||||
DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
|
||||
|
||||
// SUnits - The SUnits for the current graph.
|
||||
const std::vector<SUnit> *SUnits;
|
||||
@ -478,7 +795,7 @@ namespace {
|
||||
explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii)
|
||||
: TII(tii) {}
|
||||
|
||||
void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
|
||||
void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
|
||||
std::vector<SUnit> &sunits) {
|
||||
SUnitMap = &sumap;
|
||||
SUnits = &sunits;
|
||||
@ -488,6 +805,16 @@ namespace {
|
||||
CalculateSethiUllmanNumbers();
|
||||
}
|
||||
|
||||
void addNode(const SUnit *SU) {
|
||||
SethiUllmanNumbers.resize(SUnits->size(), 0);
|
||||
CalcNodeSethiUllmanNumber(SU);
|
||||
}
|
||||
|
||||
void updateNode(const SUnit *SU) {
|
||||
SethiUllmanNumbers[SU->NodeNum] = 0;
|
||||
CalcNodeSethiUllmanNumber(SU);
|
||||
}
|
||||
|
||||
void releaseState() {
|
||||
SUnits = 0;
|
||||
SethiUllmanNumbers.clear();
|
||||
@ -519,18 +846,6 @@ namespace {
|
||||
return SethiUllmanNumbers[SU->NodeNum];
|
||||
}
|
||||
|
||||
bool isDUOperand(const SUnit *SU1, const SUnit *SU2) {
|
||||
unsigned Opc = SU1->Node->getTargetOpcode();
|
||||
unsigned NumRes = TII->getNumDefs(Opc);
|
||||
unsigned NumOps = ScheduleDAG::CountOperands(SU1->Node);
|
||||
for (unsigned i = 0; i != NumOps; ++i) {
|
||||
if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) == -1)
|
||||
continue;
|
||||
if (SU1->Node->getOperand(i).isOperand(SU2->Node))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
private:
|
||||
bool canClobber(SUnit *SU, SUnit *Op);
|
||||
void AddPseudoTwoAddrDeps();
|
||||
@ -542,8 +857,8 @@ namespace {
|
||||
template<class SF>
|
||||
class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
|
||||
: public RegReductionPriorityQueue<SF> {
|
||||
// SUnitMap SDNode to SUnit mapping (n -> 1).
|
||||
DenseMap<SDNode*, SUnit*> *SUnitMap;
|
||||
// SUnitMap SDNode to SUnit mapping (n -> n).
|
||||
DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
|
||||
|
||||
// SUnits - The SUnits for the current graph.
|
||||
const std::vector<SUnit> *SUnits;
|
||||
@ -554,7 +869,7 @@ namespace {
|
||||
public:
|
||||
TDRegReductionPriorityQueue() {}
|
||||
|
||||
void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
|
||||
void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
|
||||
std::vector<SUnit> &sunits) {
|
||||
SUnitMap = &sumap;
|
||||
SUnits = &sunits;
|
||||
@ -562,6 +877,16 @@ namespace {
|
||||
CalculateSethiUllmanNumbers();
|
||||
}
|
||||
|
||||
void addNode(const SUnit *SU) {
|
||||
SethiUllmanNumbers.resize(SUnits->size(), 0);
|
||||
CalcNodeSethiUllmanNumber(SU);
|
||||
}
|
||||
|
||||
void updateNode(const SUnit *SU) {
|
||||
SethiUllmanNumbers[SU->NodeNum] = 0;
|
||||
CalcNodeSethiUllmanNumber(SU);
|
||||
}
|
||||
|
||||
void releaseState() {
|
||||
SUnits = 0;
|
||||
SethiUllmanNumbers.clear();
|
||||
@ -710,7 +1035,7 @@ bool BURegReductionPriorityQueue<SF>::canClobber(SUnit *SU, SUnit *Op) {
|
||||
for (unsigned i = 0; i != NumOps; ++i) {
|
||||
if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) {
|
||||
SDNode *DU = SU->Node->getOperand(i).Val;
|
||||
if (Op == (*SUnitMap)[DU])
|
||||
if (Op == (*SUnitMap)[DU][SU->InstanceNo])
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@ -740,23 +1065,25 @@ void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
|
||||
for (unsigned j = 0; j != NumOps; ++j) {
|
||||
if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) {
|
||||
SDNode *DU = SU->Node->getOperand(j).Val;
|
||||
SUnit *DUSU = (*SUnitMap)[DU];
|
||||
SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
|
||||
if (!DUSU) continue;
|
||||
for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl) continue;
|
||||
SUnit *SuccSU = I->Dep;
|
||||
if (SuccSU != SU &&
|
||||
(!canClobber(SuccSU, DUSU) ||
|
||||
(!SU->isCommutable && SuccSU->isCommutable))){
|
||||
if (SuccSU->Depth == SU->Depth && !isReachable(SuccSU, SU)) {
|
||||
DOUT << "Adding an edge from SU # " << SU->NodeNum
|
||||
<< " to SU #" << SuccSU->NodeNum << "\n";
|
||||
if (SU->addPred(SuccSU, true))
|
||||
SU->NumChainPredsLeft++;
|
||||
if (SuccSU->addSucc(SU, true))
|
||||
SuccSU->NumChainSuccsLeft++;
|
||||
}
|
||||
// Don't constraint nodes with implicit defs. It can create cycles
|
||||
// plus it may increase register pressures.
|
||||
if (SuccSU == SU || SuccSU->hasImplicitDefs)
|
||||
continue;
|
||||
// Be conservative. Ignore if nodes aren't at the same depth.
|
||||
if (SuccSU->Depth != SU->Depth)
|
||||
continue;
|
||||
if ((!canClobber(SuccSU, DUSU) ||
|
||||
(!SU->isCommutable && SuccSU->isCommutable)) &&
|
||||
!isReachable(SuccSU, SU)) {
|
||||
DOUT << "Adding an edge from SU # " << SU->NodeNum
|
||||
<< " to SU #" << SuccSU->NodeNum << "\n";
|
||||
SU->addPred(SuccSU, true, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -783,7 +1110,7 @@ CalcNodeSethiUllmanNumber(const SUnit *SU) {
|
||||
SethiUllmanNumber = PredSethiUllman;
|
||||
Extra = 0;
|
||||
} else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
|
||||
Extra++;
|
||||
++Extra;
|
||||
}
|
||||
|
||||
SethiUllmanNumber += Extra;
|
||||
@ -813,7 +1140,7 @@ static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
|
||||
EE = SuccSU->Preds.end(); II != EE; ++II) {
|
||||
SUnit *PredSU = II->Dep;
|
||||
if (!PredSU->isScheduled)
|
||||
Sum++;
|
||||
++Sum;
|
||||
}
|
||||
}
|
||||
|
||||
@ -906,7 +1233,7 @@ CalcNodeSethiUllmanNumber(const SUnit *SU) {
|
||||
SethiUllmanNumber = PredSethiUllman;
|
||||
Extra = 0;
|
||||
} else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
|
||||
Extra++;
|
||||
++Extra;
|
||||
}
|
||||
|
||||
SethiUllmanNumber += Extra;
|
||||
|
@ -697,9 +697,9 @@ void ScheduleDAGSimple::EmitAll() {
|
||||
NodeInfo *NI = Ordering[i];
|
||||
if (NI->isInGroup()) {
|
||||
NodeGroupIterator NGI(Ordering[i]);
|
||||
while (NodeInfo *NI = NGI.next()) EmitNode(NI->Node, VRBaseMap);
|
||||
while (NodeInfo *NI = NGI.next()) EmitNode(NI->Node, 0, VRBaseMap);
|
||||
} else {
|
||||
EmitNode(NI->Node, VRBaseMap);
|
||||
EmitNode(NI->Node, 0, VRBaseMap);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -281,7 +281,7 @@ namespace llvm {
|
||||
GraphWriter<ScheduleDAG*> &GW) {
|
||||
GW.emitSimpleNode(0, "plaintext=circle", "GraphRoot");
|
||||
if (G->DAG.getRoot().Val)
|
||||
GW.emitEdge(0, -1, G->SUnitMap[G->DAG.getRoot().Val], -1, "");
|
||||
GW.emitEdge(0, -1, G->SUnitMap[G->DAG.getRoot().Val].front(), -1, "");
|
||||
}
|
||||
};
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user