Cosmetic change

"True Loop" and "False Loop" naming terminology to refer two loops
after loop cloning is confusing. Instead just use A_Loop and B_Loop.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41287 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Devang Patel 2007-08-22 19:33:29 +00:00
parent b753a9bb62
commit a8644e306d

View File

@ -757,59 +757,72 @@ bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
if (!safeSplitCondition(SD)) if (!safeSplitCondition(SD))
return false; return false;
// True loop is original loop. False loop is cloned loop. // After loop is cloned there are two loops.
BasicBlock *TL_SplitCondBlock = SD.SplitCondition->getParent(); //
BasicBlock *TL_Preheader = L->getLoopPreheader(); // First loop, referred as ALoop, executes first part of loop's iteration
// space split. Second loop, referred as BLoop, executes remaining
// part of loop's iteration space.
//
// ALoop's exit edge enters BLoop's header through a forwarding block which
// acts as a BLoop's preheader.
bool SignedPredicate = ExitCondition->isSignedPredicate(); //[*] Calculate ALoop induction variable's new exiting value and
//[*] Calculate True loop's new Exit Value in loop preheader. // BLoop induction variable's new starting value. Calculuate these
// TL_ExitValue = min(SplitValue, ExitValue) // values in original loop's preheader.
//[*] Calculate False loop's new Start Value in loop preheader. // A_ExitValue = min(SplitValue, OrignalLoopExitValue)
// FL_StartValue = max(SplitValue, TrueLoop.StartValue) // B_StartValue = max(SplitValue, OriginalLoopStartValue)
Value *TL_ExitValue = NULL; Value *A_ExitValue = NULL;
Value *FL_StartValue = NULL; Value *B_StartValue = NULL;
if (isa<ConstantInt>(SD.SplitValue)) { if (isa<ConstantInt>(SD.SplitValue)) {
TL_ExitValue = SD.SplitValue; A_ExitValue = SD.SplitValue;
FL_StartValue = SD.SplitValue; B_StartValue = SD.SplitValue;
} }
else { else {
Instruction *TL_PHTerminator = TL_Preheader->getTerminator(); BasicBlock *Preheader = L->getLoopPreheader();
Instruction *PHTerminator = Preheader->getTerminator();
bool SignedPredicate = ExitCondition->isSignedPredicate();
Value *C1 = new ICmpInst(SignedPredicate ? Value *C1 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue, SD.SplitValue,
ExitCondition->getOperand(ExitValueNum), ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", TL_PHTerminator); "lsplit.ev", PHTerminator);
TL_ExitValue = new SelectInst(C1, SD.SplitValue, A_ExitValue = new SelectInst(C1, SD.SplitValue,
ExitCondition->getOperand(ExitValueNum), ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", TL_PHTerminator); "lsplit.ev", PHTerminator);
Value *C2 = new ICmpInst(SignedPredicate ? Value *C2 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue, StartValue, "lsplit.sv", SD.SplitValue, StartValue, "lsplit.sv",
TL_PHTerminator); PHTerminator);
FL_StartValue = new SelectInst(C2, StartValue, SD.SplitValue, B_StartValue = new SelectInst(C2, StartValue, SD.SplitValue,
"lsplit.sv", TL_PHTerminator); "lsplit.sv", PHTerminator);
} }
//[*] Clone loop. Avoid true destination of split condition and //[*] Clone loop.
// the blocks dominated by true destination.
DenseMap<const Value *, Value *> ValueMap; DenseMap<const Value *, Value *> ValueMap;
Loop *FalseLoop = CloneLoop(L, LPM, LI, ValueMap, this); Loop *BLoop = CloneLoop(L, LPM, LI, ValueMap, this);
BasicBlock *FL_Header = FalseLoop->getHeader(); BasicBlock *B_Header = BLoop->getHeader();
//[*] True loop's exit edge enters False loop. //[*] ALoop's exiting edge BLoop's header.
PHINode *FL_IndVar = cast<PHINode>(ValueMap[IndVar]); // ALoop's original exit block becomes BLoop's exit block.
BasicBlock *TL_ExitingBlock = ExitCondition->getParent(); PHINode *B_IndVar = cast<PHINode>(ValueMap[IndVar]);
BranchInst *TL_ExitInsn = BasicBlock *A_ExitingBlock = ExitCondition->getParent();
dyn_cast<BranchInst>(TL_ExitingBlock->getTerminator()); BranchInst *A_ExitInsn =
assert (TL_ExitInsn && "Unable to find suitable loop exit branch"); dyn_cast<BranchInst>(A_ExitingBlock->getTerminator());
BasicBlock *TL_ExitDest = TL_ExitInsn->getSuccessor(1); assert (A_ExitInsn && "Unable to find suitable loop exit branch");
BasicBlock *B_ExitBlock = A_ExitInsn->getSuccessor(1);
if (L->contains(TL_ExitDest)) { if (L->contains(B_ExitBlock)) {
TL_ExitDest = TL_ExitInsn->getSuccessor(0); B_ExitBlock = A_ExitInsn->getSuccessor(0);
TL_ExitInsn->setSuccessor(0, FL_Header); A_ExitInsn->setSuccessor(0, B_Header);
} else } else
TL_ExitInsn->setSuccessor(1, FL_Header); A_ExitInsn->setSuccessor(1, B_Header);
//[*] Update ALoop's exit value using new exit value.
ExitCondition->setOperand(ExitValueNum, A_ExitValue);
// [*] Update BLoop's header phi nodes. Remove incoming PHINode's from
// original loop's preheader. Add incoming PHINode values from
// ALoop's exiting block. Update BLoop header's domiantor info.
// Collect inverse map of Header PHINodes. // Collect inverse map of Header PHINodes.
DenseMap<Value *, Value *> InverseMap; DenseMap<Value *, Value *> InverseMap;
@ -821,76 +834,81 @@ bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
} else } else
break; break;
} }
BasicBlock *Preheader = L->getLoopPreheader();
// Update False loop's header for (BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
for (BasicBlock::iterator BI = FL_Header->begin(), BE = FL_Header->end();
BI != BE; ++BI) { BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) { if (PHINode *PN = dyn_cast<PHINode>(BI)) {
PN->removeIncomingValue(TL_Preheader); // Remove incoming value from original preheader.
if (PN == FL_IndVar) PN->removeIncomingValue(Preheader);
PN->addIncoming(FL_StartValue, TL_ExitingBlock);
// Add incoming value from A_ExitingBlock.
if (PN == B_IndVar)
PN->addIncoming(B_StartValue, A_ExitingBlock);
else { else {
PHINode *OrigPN = cast<PHINode>(InverseMap[PN]); PHINode *OrigPN = cast<PHINode>(InverseMap[PN]);
Value *V2 = OrigPN->getIncomingValueForBlock(TL_ExitingBlock); Value *V2 = OrigPN->getIncomingValueForBlock(A_ExitingBlock);
PN->addIncoming(V2, TL_ExitingBlock); PN->addIncoming(V2, A_ExitingBlock);
} }
} else } else
break; break;
} }
DT->changeImmediateDominator(B_Header, A_ExitingBlock);
DF->changeImmediateDominator(B_Header, A_ExitingBlock, DT);
// Update TL_ExitDest. Now it's predecessor is False loop's exit block. // [*] Update BLoop's exit block. Its new predecessor is BLoop's exit
BasicBlock *FL_ExitingBlock = cast<BasicBlock>(ValueMap[TL_ExitingBlock]); // block. Remove incoming PHINode values from ALoop's exiting block.
for (BasicBlock::iterator BI = TL_ExitDest->begin(), BE = TL_ExitDest->end(); // Add new incoming values from BLoop's incoming exiting value.
// Update BLoop exit block's dominator info..
BasicBlock *B_ExitingBlock = cast<BasicBlock>(ValueMap[A_ExitingBlock]);
for (BasicBlock::iterator BI = B_ExitBlock->begin(), BE = B_ExitBlock->end();
BI != BE; ++BI) { BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) { if (PHINode *PN = dyn_cast<PHINode>(BI)) {
PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(TL_ExitingBlock)], PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(A_ExitingBlock)],
FL_ExitingBlock); B_ExitingBlock);
PN->removeIncomingValue(TL_ExitingBlock); PN->removeIncomingValue(A_ExitingBlock);
} else } else
break; break;
} }
if (DT) { DT->changeImmediateDominator(B_ExitBlock, B_ExitingBlock);
DT->changeImmediateDominator(FL_Header, TL_ExitingBlock); DF->changeImmediateDominator(B_ExitBlock, B_ExitingBlock, DT);
DT->changeImmediateDominator(TL_ExitDest,
cast<BasicBlock>(ValueMap[TL_ExitingBlock]));
}
assert (!L->contains(TL_ExitDest) && " Unable to find exit edge destination"); //[*] Split ALoop's exit edge. This creates a new block which
// serves two purposes. First one is to hold PHINode defnitions
// to ensure that ALoop's LCSSA form. Second use it to act
// as a preheader for BLoop.
BasicBlock *A_ExitBlock = SplitEdge(A_ExitingBlock, B_Header, this);
//[*] Split Exit Edge. //[*] Preserve ALoop's LCSSA form. Create new forwarding PHINodes
BasicBlock *TL_ExitBlock = SplitEdge(TL_ExitingBlock, FL_Header, this); // in A_ExitBlock to redefine outgoing PHI definitions from ALoop.
for(BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
//[*] Eliminate split condition's false branch from True loop.
BranchInst *TL_BR = cast<BranchInst>(TL_SplitCondBlock->getTerminator());
BasicBlock *TL_FalseBlock = TL_BR->getSuccessor(1);
TL_BR->setUnconditionalDest(TL_BR->getSuccessor(0));
removeBlocks(TL_FalseBlock, L, TL_BR->getSuccessor(0));
//[*] Update True loop's exit value using new exit value.
ExitCondition->setOperand(ExitValueNum, TL_ExitValue);
//[*] Eliminate split condition's true branch in False loop CFG.
BasicBlock *FL_SplitCondBlock = cast<BasicBlock>(ValueMap[TL_SplitCondBlock]);
BranchInst *FL_BR = cast<BranchInst>(FL_SplitCondBlock->getTerminator());
BasicBlock *FL_TrueBlock = FL_BR->getSuccessor(0);
FL_BR->setUnconditionalDest(FL_BR->getSuccessor(1));
removeBlocks(FL_TrueBlock, FalseLoop,
cast<BasicBlock>(FL_BR->getSuccessor(0)));
//[*] Preserve LCSSA
for(BasicBlock::iterator BI = FL_Header->begin(), BE = FL_Header->end();
BI != BE; ++BI) { BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) { if (PHINode *PN = dyn_cast<PHINode>(BI)) {
Value *V1 = PN->getIncomingValueForBlock(TL_ExitBlock); Value *V1 = PN->getIncomingValueForBlock(A_ExitBlock);
PHINode *newPHI = new PHINode(PN->getType(), PN->getName()); PHINode *newPHI = new PHINode(PN->getType(), PN->getName());
newPHI->addIncoming(V1, TL_ExitingBlock); newPHI->addIncoming(V1, A_ExitingBlock);
TL_ExitBlock->getInstList().push_front(newPHI); A_ExitBlock->getInstList().push_front(newPHI);
PN->removeIncomingValue(TL_ExitBlock); PN->removeIncomingValue(A_ExitBlock);
PN->addIncoming(newPHI, TL_ExitBlock); PN->addIncoming(newPHI, A_ExitBlock);
} else } else
break; break;
} }
//[*] Eliminate split condition's inactive branch from ALoop.
BasicBlock *A_SplitCondBlock = SD.SplitCondition->getParent();
BranchInst *A_BR = cast<BranchInst>(A_SplitCondBlock->getTerminator());
BasicBlock *A_InactiveBranch = A_BR->getSuccessor(1);
BasicBlock *A_ActiveBranch = A_BR->getSuccessor(1);
A_BR->setUnconditionalDest(A_BR->getSuccessor(0));
removeBlocks(A_InactiveBranch, L, A_ActiveBranch);
//[*] Eliminate split condition's inactive branch in from BLoop.
BasicBlock *B_SplitCondBlock = cast<BasicBlock>(ValueMap[A_SplitCondBlock]);
BranchInst *B_BR = cast<BranchInst>(B_SplitCondBlock->getTerminator());
BasicBlock *B_InactiveBranch = B_BR->getSuccessor(0);
BasicBlock *B_ActiveBranch = B_BR->getSuccessor(1);
B_BR->setUnconditionalDest(B_BR->getSuccessor(1));
removeBlocks(B_InactiveBranch, BLoop, B_ActiveBranch);
return true; return true;
} }