Refactor memcpyopt based on Chris' suggestions. Consolidate several functions

and simplify code that was fallout from the separation of memcpyopt and gvn.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50034 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2008-04-21 07:45:10 +00:00
parent e47d98200e
commit a8bd65835b
3 changed files with 47 additions and 95 deletions

View File

@ -14,23 +14,14 @@
#define DEBUG_TYPE "memcpyopt" #define DEBUG_TYPE "memcpyopt"
#include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h" #include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h" #include "llvm/Instructions.h"
#include "llvm/ParameterAttributes.h" #include "llvm/ParameterAttributes.h"
#include "llvm/Value.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h" #include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h" #include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetData.h" #include "llvm/Target/TargetData.h"
@ -40,13 +31,6 @@ using namespace llvm;
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
STATISTIC(NumMemSetInfer, "Number of memsets inferred"); STATISTIC(NumMemSetInfer, "Number of memsets inferred");
namespace {
cl::opt<bool>
FormMemSet("form-memset-from-stores",
cl::desc("Transform straight-line stores to memsets"),
cl::init(true), cl::Hidden);
}
/// isBytewiseValue - If the specified value can be set by repeating the same /// isBytewiseValue - If the specified value can be set by repeating the same
/// byte in memory, return the i8 value that it is represented with. This is /// byte in memory, return the i8 value that it is represented with. This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1, /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
@ -332,13 +316,9 @@ namespace {
} }
// Helper fuctions // Helper fuctions
bool processInstruction(Instruction* I, bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
SmallVectorImpl<Instruction*> &toErase); bool processMemCpy(MemCpyInst* M);
bool processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toErase); bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
bool processMemCpy(MemCpyInst* M, MemCpyInst* MDep,
SmallVectorImpl<Instruction*> &toErase);
bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C,
SmallVectorImpl<Instruction*> &toErase);
bool iterateOnFunction(Function &F); bool iterateOnFunction(Function &F);
}; };
@ -357,8 +337,7 @@ static RegisterPass<MemCpyOpt> X("memcpyopt",
/// some other patterns to fold away. In particular, this looks for stores to /// some other patterns to fold away. In particular, this looks for stores to
/// neighboring locations of memory. If it sees enough consequtive ones /// neighboring locations of memory. If it sees enough consequtive ones
/// (currently 4) it attempts to merge them together into a memcpy/memset. /// (currently 4) it attempts to merge them together into a memcpy/memset.
bool MemCpyOpt::processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toErase) { bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
if (!FormMemSet) return false;
if (SI->isVolatile()) return false; if (SI->isVolatile()) return false;
// There are two cases that are interesting for this code to handle: memcpy // There are two cases that are interesting for this code to handle: memcpy
@ -473,8 +452,13 @@ bool MemCpyOpt::processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toEra
cerr << *Range.TheStores[i]; cerr << *Range.TheStores[i];
cerr << "With: " << *C); C=C; cerr << "With: " << *C); C=C;
// Don't invalidate the iterator
BBI = BI;
// Zap all the stores. // Zap all the stores.
toErase.append(Range.TheStores.begin(), Range.TheStores.end()); for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
SE = Range.TheStores.end(); SI != SE; ++SI)
(*SI)->eraseFromParent();
++NumMemSetInfer; ++NumMemSetInfer;
MadeChange = true; MadeChange = true;
} }
@ -486,8 +470,7 @@ bool MemCpyOpt::processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toEra
/// performCallSlotOptzn - takes a memcpy and a call that it depends on, /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
/// and checks for the possibility of a call slot optimization by having /// and checks for the possibility of a call slot optimization by having
/// the call write its result directly into the destination of the memcpy. /// the call write its result directly into the destination of the memcpy.
bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C, bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
SmallVectorImpl<Instruction*> &toErase) {
// The general transformation to keep in mind is // The general transformation to keep in mind is
// //
// call @func(..., src, ...) // call @func(..., src, ...)
@ -612,7 +595,8 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C,
// Remove the memcpy // Remove the memcpy
MD.removeInstruction(cpy); MD.removeInstruction(cpy);
toErase.push_back(cpy); cpy->eraseFromParent();
NumMemCpyInstr++;
return true; return true;
} }
@ -621,8 +605,23 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C,
/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be /// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
/// a memcpy from X to Z (or potentially a memmove, depending on circumstances). /// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
/// This allows later passes to remove the first memcpy altogether. /// This allows later passes to remove the first memcpy altogether.
bool MemCpyOpt::processMemCpy(MemCpyInst* M, MemCpyInst* MDep, bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
SmallVectorImpl<Instruction*> &toErase) { MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
// The are two possible optimizations we can do for memcpy:
// a) memcpy-memcpy xform which exposes redundance for DSE
// b) call-memcpy xform for return slot optimization
Instruction* dep = MD.getDependency(M);
if (dep == MemoryDependenceAnalysis::None ||
dep == MemoryDependenceAnalysis::NonLocal)
return false;
else if (CallInst* C = dyn_cast<CallInst>(dep))
return performCallSlotOptzn(M, C);
else if (!isa<MemCpyInst>(dep))
return false;
MemCpyInst* MDep = cast<MemCpyInst>(dep);
// We can only transforms memcpy's where the dest of one is the source of the // We can only transforms memcpy's where the dest of one is the source of the
// other // other
if (M->getSource() != MDep->getDest()) if (M->getSource() != MDep->getDest())
@ -667,41 +666,16 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M, MemCpyInst* MDep,
CallInst* C = CallInst::Create(MemCpyFun, args.begin(), args.end(), "", M); CallInst* C = CallInst::Create(MemCpyFun, args.begin(), args.end(), "", M);
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
if (MD.getDependency(C) == MDep) { if (MD.getDependency(C) == MDep) {
MD.dropInstruction(M); MD.dropInstruction(M);
toErase.push_back(M); M->eraseFromParent();
return true; return true;
} }
MD.removeInstruction(C); MD.removeInstruction(C);
toErase.push_back(C); C->eraseFromParent();
return false;
}
/// processInstruction - When calculating availability, handle an instruction NumMemCpyInstr++;
/// by inserting it into the appropriate sets
bool MemCpyOpt::processInstruction(Instruction *I,
SmallVectorImpl<Instruction*> &toErase) {
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return processStore(SI, toErase);
if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
// The are two possible optimizations we can do for memcpy:
// a) memcpy-memcpy xform which exposes redundance for DSE
// b) call-memcpy xform for return slot optimization
Instruction* dep = MD.getDependency(M);
if (dep == MemoryDependenceAnalysis::None ||
dep == MemoryDependenceAnalysis::NonLocal)
return false;
if (MemCpyInst *MemCpy = dyn_cast<MemCpyInst>(dep))
return processMemCpy(M, MemCpy, toErase);
if (CallInst* C = dyn_cast<CallInst>(dep))
return performCallSlotOptzn(M, C, toErase);
return false;
}
return false; return false;
} }
@ -727,41 +701,19 @@ bool MemCpyOpt::runOnFunction(Function& F) {
bool MemCpyOpt::iterateOnFunction(Function &F) { bool MemCpyOpt::iterateOnFunction(Function &F) {
bool changed_function = false; bool changed_function = false;
DominatorTree &DT = getAnalysis<DominatorTree>(); // Walk all instruction in the function
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
SmallVector<Instruction*, 8> toErase;
// Top-down walk of the dominator tree
for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()),
E = df_end(DT.getRootNode()); DI != E; ++DI) {
BasicBlock* BB = DI->getBlock();
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) { BI != BE;) {
changed_function |= processInstruction(BI, toErase); // Avoid invalidating the iterator
if (toErase.empty()) { Instruction* I = BI++;
++BI;
continue; if (StoreInst *SI = dyn_cast<StoreInst>(I))
changed_function |= processStore(SI, BI);
if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
changed_function |= processMemCpy(M);
} }
// If we need some instructions deleted, do it now.
NumMemCpyInstr += toErase.size();
// Avoid iterator invalidation.
bool AtStart = BI == BB->begin();
if (!AtStart)
--BI;
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I)
(*I)->eraseFromParent();
if (AtStart)
BI = BB->begin();
else
++BI;
toErase.clear();
} }
} }

View File

@ -1,5 +1,5 @@
; RUN: llvm-as < %s | opt -memcpyopt -form-memset-from-stores | llvm-dis | not grep store ; RUN: llvm-as < %s | opt -memcpyopt | llvm-dis | not grep store
; RUN: llvm-as < %s | opt -memcpyopt -form-memset-from-stores | llvm-dis | grep {call.*llvm.memset} ; RUN: llvm-as < %s | opt -memcpyopt | llvm-dis | grep {call.*llvm.memset}
; All the stores in this example should be merged into a single memset. ; All the stores in this example should be merged into a single memset.

View File

@ -1,5 +1,5 @@
; RUN: llvm-as < %s | opt -memcpyopt -form-memset-from-stores | llvm-dis | not grep store ; RUN: llvm-as < %s | opt -memcpyopt | llvm-dis | not grep store
; RUN: llvm-as < %s | opt -memcpyopt -form-memset-from-stores | llvm-dis | grep {call.*llvm.memset} | count 3 ; RUN: llvm-as < %s | opt -memcpyopt | llvm-dis | grep {call.*llvm.memset} | count 3
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128" target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
target triple = "i386-apple-darwin8" target triple = "i386-apple-darwin8"