Re-apply r194300 with fixes for warnings.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194311 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Lang Hames 2013-11-09 03:08:56 +00:00
parent 95830221bd
commit a91d7b170b
7 changed files with 448 additions and 436 deletions

View File

@ -20,79 +20,63 @@
#include "llvm/ADT/ilist_node.h"
#include <list>
#include <map>
#include <set>
namespace PBQP {
/// PBQP Graph class.
/// Instances of this class describe PBQP problems.
class Graph {
private:
// ----- TYPEDEFS -----
class NodeEntry;
class EdgeEntry;
typedef llvm::ilist<NodeEntry> NodeList;
typedef llvm::ilist<EdgeEntry> EdgeList;
public:
typedef NodeList::iterator NodeItr;
typedef NodeList::const_iterator ConstNodeItr;
typedef EdgeList::iterator EdgeItr;
typedef EdgeList::const_iterator ConstEdgeItr;
typedef unsigned NodeId;
typedef unsigned EdgeId;
private:
typedef std::list<EdgeItr> AdjEdgeList;
typedef std::set<NodeId> AdjEdgeList;
public:
typedef AdjEdgeList::iterator AdjEdgeItr;
private:
class NodeEntry : public llvm::ilist_node<NodeEntry> {
friend struct llvm::ilist_sentinel_traits<NodeEntry>;
class NodeEntry {
private:
Vector costs;
AdjEdgeList adjEdges;
unsigned degree;
void *data;
NodeEntry() : costs(0, 0) {}
public:
NodeEntry(const Vector &costs) : costs(costs), degree(0) {}
NodeEntry(const Vector &costs) : costs(costs), data(0) {}
Vector& getCosts() { return costs; }
const Vector& getCosts() const { return costs; }
unsigned getDegree() const { return degree; }
unsigned getDegree() const { return adjEdges.size(); }
AdjEdgeItr edgesBegin() { return adjEdges.begin(); }
AdjEdgeItr edgesEnd() { return adjEdges.end(); }
AdjEdgeItr addEdge(EdgeItr e) {
++degree;
AdjEdgeItr addEdge(EdgeId e) {
return adjEdges.insert(adjEdges.end(), e);
}
void removeEdge(AdjEdgeItr ae) {
--degree;
adjEdges.erase(ae);
}
void setData(void *data) { this->data = data; }
void* getData() { return data; }
};
class EdgeEntry : public llvm::ilist_node<EdgeEntry> {
friend struct llvm::ilist_sentinel_traits<EdgeEntry>;
class EdgeEntry {
private:
NodeItr node1, node2;
NodeId node1, node2;
Matrix costs;
AdjEdgeItr node1AEItr, node2AEItr;
void *data;
EdgeEntry() : costs(0, 0, 0) {}
EdgeEntry() : costs(0, 0, 0), data(0) {}
public:
EdgeEntry(NodeItr node1, NodeItr node2, const Matrix &costs)
EdgeEntry(NodeId node1, NodeId node2, const Matrix &costs)
: node1(node1), node2(node2), costs(costs) {}
NodeItr getNode1() const { return node1; }
NodeItr getNode2() const { return node2; }
NodeId getNode1() const { return node1; }
NodeId getNode2() const { return node2; }
Matrix& getCosts() { return costs; }
const Matrix& getCosts() const { return costs; }
void setNode1AEItr(AdjEdgeItr ae) { node1AEItr = ae; }
@ -105,72 +89,128 @@ namespace PBQP {
// ----- MEMBERS -----
NodeList nodes;
unsigned numNodes;
typedef std::vector<NodeEntry> NodeVector;
typedef std::vector<NodeId> FreeNodeVector;
NodeVector nodes;
FreeNodeVector freeNodes;
EdgeList edges;
unsigned numEdges;
typedef std::vector<EdgeEntry> EdgeVector;
typedef std::vector<EdgeId> FreeEdgeVector;
EdgeVector edges;
FreeEdgeVector freeEdges;
// ----- INTERNAL METHODS -----
NodeEntry& getNode(NodeItr nItr) { return *nItr; }
const NodeEntry& getNode(ConstNodeItr nItr) const { return *nItr; }
NodeEntry& getNode(NodeId nId) { return nodes[nId]; }
const NodeEntry& getNode(NodeId nId) const { return nodes[nId]; }
EdgeEntry& getEdge(EdgeItr eItr) { return *eItr; }
const EdgeEntry& getEdge(ConstEdgeItr eItr) const { return *eItr; }
EdgeEntry& getEdge(EdgeId eId) { return edges[eId]; }
const EdgeEntry& getEdge(EdgeId eId) const { return edges[eId]; }
NodeItr addConstructedNode(const NodeEntry &n) {
++numNodes;
return nodes.insert(nodes.end(), n);
NodeId addConstructedNode(const NodeEntry &n) {
NodeId nodeId = 0;
if (!freeNodes.empty()) {
nodeId = freeNodes.back();
freeNodes.pop_back();
nodes[nodeId] = n;
} else {
nodeId = nodes.size();
nodes.push_back(n);
}
return nodeId;
}
EdgeItr addConstructedEdge(const EdgeEntry &e) {
assert(findEdge(e.getNode1(), e.getNode2()) == edges.end() &&
EdgeId addConstructedEdge(const EdgeEntry &e) {
assert(findEdge(e.getNode1(), e.getNode2()) == invalidEdgeId() &&
"Attempt to add duplicate edge.");
++numEdges;
EdgeItr edgeItr = edges.insert(edges.end(), e);
EdgeEntry &ne = getEdge(edgeItr);
EdgeId edgeId = 0;
if (!freeEdges.empty()) {
edgeId = freeEdges.back();
freeEdges.pop_back();
edges[edgeId] = e;
} else {
edgeId = edges.size();
edges.push_back(e);
}
EdgeEntry &ne = getEdge(edgeId);
NodeEntry &n1 = getNode(ne.getNode1());
NodeEntry &n2 = getNode(ne.getNode2());
// Sanity check on matrix dimensions:
assert((n1.getCosts().getLength() == ne.getCosts().getRows()) &&
(n2.getCosts().getLength() == ne.getCosts().getCols()) &&
"Edge cost dimensions do not match node costs dimensions.");
ne.setNode1AEItr(n1.addEdge(edgeItr));
ne.setNode2AEItr(n2.addEdge(edgeItr));
return edgeItr;
ne.setNode1AEItr(n1.addEdge(edgeId));
ne.setNode2AEItr(n2.addEdge(edgeId));
return edgeId;
}
inline void copyFrom(const Graph &other);
Graph(const Graph &other) {}
void operator=(const Graph &other) {}
public:
class NodeItr {
public:
NodeItr(NodeId nodeId, const Graph &g)
: nodeId(nodeId), endNodeId(g.nodes.size()), freeNodes(g.freeNodes) {
this->nodeId = findNextInUse(nodeId); // Move to the first in-use nodeId
}
bool operator==(const NodeItr& n) const { return nodeId == n.nodeId; }
bool operator!=(const NodeItr& n) const { return !(*this == n); }
NodeItr& operator++() { nodeId = findNextInUse(++nodeId); return *this; }
NodeId operator*() const { return nodeId; }
private:
NodeId findNextInUse(NodeId n) const {
while (n < endNodeId &&
std::find(freeNodes.begin(), freeNodes.end(), n) !=
freeNodes.end()) {
++n;
}
return n;
}
NodeId nodeId, endNodeId;
const FreeNodeVector& freeNodes;
};
class EdgeItr {
public:
EdgeItr(EdgeId edgeId, const Graph &g)
: edgeId(edgeId), endEdgeId(g.edges.size()), freeEdges(g.freeEdges) {
this->edgeId = findNextInUse(edgeId); // Move to the first in-use edgeId
}
bool operator==(const EdgeItr& n) const { return edgeId == n.edgeId; }
bool operator!=(const EdgeItr& n) const { return !(*this == n); }
EdgeItr& operator++() { edgeId = findNextInUse(++edgeId); return *this; }
EdgeId operator*() const { return edgeId; }
private:
EdgeId findNextInUse(EdgeId n) const {
while (n < endEdgeId &&
std::find(freeEdges.begin(), freeEdges.end(), n) !=
freeEdges.end()) {
++n;
}
return n;
}
EdgeId edgeId, endEdgeId;
const FreeEdgeVector& freeEdges;
};
/// \brief Construct an empty PBQP graph.
Graph() : numNodes(0), numEdges(0) {}
/// \brief Copy construct this graph from "other". Note: Does not copy node
/// and edge data, only graph structure and costs.
/// @param other Source graph to copy from.
Graph(const Graph &other) : numNodes(0), numEdges(0) {
copyFrom(other);
}
/// \brief Make this graph a copy of "other". Note: Does not copy node and
/// edge data, only graph structure and costs.
/// @param other The graph to copy from.
/// @return A reference to this graph.
///
/// This will clear the current graph, erasing any nodes and edges added,
/// before copying from other.
Graph& operator=(const Graph &other) {
clear();
copyFrom(other);
return *this;
}
Graph() {}
/// \brief Add a node with the given costs.
/// @param costs Cost vector for the new node.
/// @return Node iterator for the added node.
NodeItr addNode(const Vector &costs) {
NodeId addNode(const Vector &costs) {
return addConstructedNode(NodeEntry(costs));
}
@ -178,32 +218,31 @@ namespace PBQP {
/// @param n1Itr First node.
/// @param n2Itr Second node.
/// @return Edge iterator for the added edge.
EdgeItr addEdge(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr,
const Matrix &costs) {
assert(getNodeCosts(n1Itr).getLength() == costs.getRows() &&
getNodeCosts(n2Itr).getLength() == costs.getCols() &&
EdgeId addEdge(NodeId n1Id, NodeId n2Id, const Matrix &costs) {
assert(getNodeCosts(n1Id).getLength() == costs.getRows() &&
getNodeCosts(n2Id).getLength() == costs.getCols() &&
"Matrix dimensions mismatch.");
return addConstructedEdge(EdgeEntry(n1Itr, n2Itr, costs));
return addConstructedEdge(EdgeEntry(n1Id, n2Id, costs));
}
/// \brief Get the number of nodes in the graph.
/// @return Number of nodes in the graph.
unsigned getNumNodes() const { return numNodes; }
unsigned getNumNodes() const { return nodes.size() - freeNodes.size(); }
/// \brief Get the number of edges in the graph.
/// @return Number of edges in the graph.
unsigned getNumEdges() const { return numEdges; }
unsigned getNumEdges() const { return edges.size() - freeEdges.size(); }
/// \brief Get a node's cost vector.
/// @param nItr Node iterator.
/// @return Node cost vector.
Vector& getNodeCosts(NodeItr nItr) { return getNode(nItr).getCosts(); }
Vector& getNodeCosts(NodeId nId) { return getNode(nId).getCosts(); }
/// \brief Get a node's cost vector (const version).
/// @param nItr Node iterator.
/// @return Node cost vector.
const Vector& getNodeCosts(ConstNodeItr nItr) const {
return getNode(nItr).getCosts();
const Vector& getNodeCosts(NodeId nId) const {
return getNode(nId).getCosts();
}
/// \brief Set a node's data pointer.
@ -211,23 +250,23 @@ namespace PBQP {
/// @param data Pointer to node data.
///
/// Typically used by a PBQP solver to attach data to aid in solution.
void setNodeData(NodeItr nItr, void *data) { getNode(nItr).setData(data); }
void setNodeData(NodeId nId, void *data) { getNode(nId).setData(data); }
/// \brief Get the node's data pointer.
/// @param nItr Node iterator.
/// @return Pointer to node data.
void* getNodeData(NodeItr nItr) { return getNode(nItr).getData(); }
void* getNodeData(NodeId nId) { return getNode(nId).getData(); }
/// \brief Get an edge's cost matrix.
/// @param eItr Edge iterator.
/// @return Edge cost matrix.
Matrix& getEdgeCosts(EdgeItr eItr) { return getEdge(eItr).getCosts(); }
Matrix& getEdgeCosts(EdgeId eId) { return getEdge(eId).getCosts(); }
/// \brief Get an edge's cost matrix (const version).
/// @param eItr Edge iterator.
/// @return Edge cost matrix.
const Matrix& getEdgeCosts(ConstEdgeItr eItr) const {
return getEdge(eItr).getCosts();
const Matrix& getEdgeCosts(EdgeId eId) const {
return getEdge(eId).getCosts();
}
/// \brief Set an edge's data pointer.
@ -235,124 +274,120 @@ namespace PBQP {
/// @param data Pointer to edge data.
///
/// Typically used by a PBQP solver to attach data to aid in solution.
void setEdgeData(EdgeItr eItr, void *data) { getEdge(eItr).setData(data); }
void setEdgeData(EdgeId eId, void *data) { getEdge(eId).setData(data); }
/// \brief Get an edge's data pointer.
/// @param eItr Edge iterator.
/// @return Pointer to edge data.
void* getEdgeData(EdgeItr eItr) { return getEdge(eItr).getData(); }
void* getEdgeData(EdgeId eId) { return getEdge(eId).getData(); }
/// \brief Get a node's degree.
/// @param nItr Node iterator.
/// @return The degree of the node.
unsigned getNodeDegree(NodeItr nItr) const {
return getNode(nItr).getDegree();
unsigned getNodeDegree(NodeId nId) const {
return getNode(nId).getDegree();
}
/// \brief Begin iterator for node set.
NodeItr nodesBegin() { return nodes.begin(); }
/// \brief Begin const iterator for node set.
ConstNodeItr nodesBegin() const { return nodes.begin(); }
NodeItr nodesBegin() const { return NodeItr(0, *this); }
/// \brief End iterator for node set.
NodeItr nodesEnd() { return nodes.end(); }
/// \brief End const iterator for node set.
ConstNodeItr nodesEnd() const { return nodes.end(); }
NodeItr nodesEnd() const { return NodeItr(nodes.size(), *this); }
/// \brief Begin iterator for edge set.
EdgeItr edgesBegin() { return edges.begin(); }
EdgeItr edgesBegin() const { return EdgeItr(0, *this); }
/// \brief End iterator for edge set.
EdgeItr edgesEnd() { return edges.end(); }
EdgeItr edgesEnd() const { return EdgeItr(edges.size(), *this); }
/// \brief Get begin iterator for adjacent edge set.
/// @param nItr Node iterator.
/// @return Begin iterator for the set of edges connected to the given node.
AdjEdgeItr adjEdgesBegin(NodeItr nItr) {
return getNode(nItr).edgesBegin();
AdjEdgeItr adjEdgesBegin(NodeId nId) {
return getNode(nId).edgesBegin();
}
/// \brief Get end iterator for adjacent edge set.
/// @param nItr Node iterator.
/// @return End iterator for the set of edges connected to the given node.
AdjEdgeItr adjEdgesEnd(NodeItr nItr) {
return getNode(nItr).edgesEnd();
AdjEdgeItr adjEdgesEnd(NodeId nId) {
return getNode(nId).edgesEnd();
}
/// \brief Get the first node connected to this edge.
/// @param eItr Edge iterator.
/// @return The first node connected to the given edge.
NodeItr getEdgeNode1(EdgeItr eItr) {
return getEdge(eItr).getNode1();
NodeId getEdgeNode1(EdgeId eId) {
return getEdge(eId).getNode1();
}
/// \brief Get the second node connected to this edge.
/// @param eItr Edge iterator.
/// @return The second node connected to the given edge.
NodeItr getEdgeNode2(EdgeItr eItr) {
return getEdge(eItr).getNode2();
NodeId getEdgeNode2(EdgeId eId) {
return getEdge(eId).getNode2();
}
/// \brief Get the "other" node connected to this edge.
/// @param eItr Edge iterator.
/// @param nItr Node iterator for the "given" node.
/// @return The iterator for the "other" node connected to this edge.
NodeItr getEdgeOtherNode(EdgeItr eItr, NodeItr nItr) {
EdgeEntry &e = getEdge(eItr);
if (e.getNode1() == nItr) {
NodeId getEdgeOtherNode(EdgeId eId, NodeId nId) {
EdgeEntry &e = getEdge(eId);
if (e.getNode1() == nId) {
return e.getNode2();
} // else
return e.getNode1();
}
EdgeId invalidEdgeId() const {
return std::numeric_limits<EdgeId>::max();
}
/// \brief Get the edge connecting two nodes.
/// @param n1Itr First node iterator.
/// @param n2Itr Second node iterator.
/// @return An iterator for edge (n1Itr, n2Itr) if such an edge exists,
/// otherwise returns edgesEnd().
EdgeItr findEdge(NodeItr n1Itr, NodeItr n2Itr) {
for (AdjEdgeItr aeItr = adjEdgesBegin(n1Itr), aeEnd = adjEdgesEnd(n1Itr);
/// @param n1Id First node id.
/// @param n2Id Second node id.
/// @return An id for edge (n1Id, n2Id) if such an edge exists,
/// otherwise returns an invalid edge id.
EdgeId findEdge(NodeId n1Id, NodeId n2Id) {
for (AdjEdgeItr aeItr = adjEdgesBegin(n1Id), aeEnd = adjEdgesEnd(n1Id);
aeItr != aeEnd; ++aeItr) {
if ((getEdgeNode1(*aeItr) == n2Itr) ||
(getEdgeNode2(*aeItr) == n2Itr)) {
if ((getEdgeNode1(*aeItr) == n2Id) ||
(getEdgeNode2(*aeItr) == n2Id)) {
return *aeItr;
}
}
return edges.end();
return invalidEdgeId();
}
/// \brief Remove a node from the graph.
/// @param nItr Node iterator.
void removeNode(NodeItr nItr) {
NodeEntry &n = getNode(nItr);
for (AdjEdgeItr itr = n.edgesBegin(), end = n.edgesEnd(); itr != end;) {
EdgeItr eItr = *itr;
++itr;
removeEdge(eItr);
/// @param nItr Node id.
void removeNode(NodeId nId) {
NodeEntry &n = getNode(nId);
for (AdjEdgeItr itr = n.edgesBegin(), end = n.edgesEnd(); itr != end; ++itr) {
EdgeId eId = *itr;
removeEdge(eId);
}
nodes.erase(nItr);
--numNodes;
freeNodes.push_back(nId);
}
/// \brief Remove an edge from the graph.
/// @param eItr Edge iterator.
void removeEdge(EdgeItr eItr) {
EdgeEntry &e = getEdge(eItr);
void removeEdge(EdgeId eId) {
EdgeEntry &e = getEdge(eId);
NodeEntry &n1 = getNode(e.getNode1());
NodeEntry &n2 = getNode(e.getNode2());
n1.removeEdge(e.getNode1AEItr());
n2.removeEdge(e.getNode2AEItr());
edges.erase(eItr);
--numEdges;
freeEdges.push_back(eId);
}
/// \brief Remove all nodes and edges from the graph.
void clear() {
nodes.clear();
freeNodes.clear();
edges.clear();
numNodes = numEdges = 0;
freeEdges.clear();
}
/// \brief Dump a graph to an output stream.
@ -362,7 +397,7 @@ namespace PBQP {
for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
const Vector& v = getNodeCosts(nodeItr);
const Vector& v = getNodeCosts(*nodeItr);
os << "\n" << v.getLength() << "\n";
assert(v.getLength() != 0 && "Empty vector in graph.");
os << v[0];
@ -374,10 +409,10 @@ namespace PBQP {
for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
unsigned n1 = std::distance(nodesBegin(), getEdgeNode1(edgeItr));
unsigned n2 = std::distance(nodesBegin(), getEdgeNode2(edgeItr));
NodeId n1 = getEdgeNode1(*edgeItr);
NodeId n2 = getEdgeNode2(*edgeItr);
assert(n1 != n2 && "PBQP graphs shound not have self-edges.");
const Matrix& m = getEdgeCosts(edgeItr);
const Matrix& m = getEdgeCosts(*edgeItr);
os << "\n" << n1 << " " << n2 << "\n"
<< m.getRows() << " " << m.getCols() << "\n";
assert(m.getRows() != 0 && "No rows in matrix.");
@ -403,7 +438,7 @@ namespace PBQP {
nodeItr != nodeEnd; ++nodeItr) {
os << " node" << nodeItr << " [ label=\""
<< nodeItr << ": " << getNodeCosts(nodeItr) << "\" ]\n";
<< nodeItr << ": " << getNodeCosts(*nodeItr) << "\" ]\n";
}
os << " edge [ len=" << getNumNodes() << " ]\n";
@ -411,11 +446,11 @@ namespace PBQP {
for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
os << " node" << getEdgeNode1(edgeItr)
<< " -- node" << getEdgeNode2(edgeItr)
os << " node" << getEdgeNode1(*edgeItr)
<< " -- node" << getEdgeNode2(*edgeItr)
<< " [ label=\"";
const Matrix &edgeCosts = getEdgeCosts(edgeItr);
const Matrix &edgeCosts = getEdgeCosts(*edgeItr);
for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
os << edgeCosts.getRowAsVector(i) << "\\n";
@ -427,39 +462,16 @@ namespace PBQP {
};
class NodeItrComparator {
public:
bool operator()(Graph::NodeItr n1, Graph::NodeItr n2) const {
return &*n1 < &*n2;
}
// void Graph::copyFrom(const Graph &other) {
// std::map<Graph::ConstNodeItr, Graph::NodeItr,
// NodeItrComparator> nodeMap;
bool operator()(Graph::ConstNodeItr n1, Graph::ConstNodeItr n2) const {
return &*n1 < &*n2;
}
};
class EdgeItrCompartor {
public:
bool operator()(Graph::EdgeItr e1, Graph::EdgeItr e2) const {
return &*e1 < &*e2;
}
bool operator()(Graph::ConstEdgeItr e1, Graph::ConstEdgeItr e2) const {
return &*e1 < &*e2;
}
};
void Graph::copyFrom(const Graph &other) {
std::map<Graph::ConstNodeItr, Graph::NodeItr,
NodeItrComparator> nodeMap;
for (Graph::ConstNodeItr nItr = other.nodesBegin(),
nEnd = other.nodesEnd();
nItr != nEnd; ++nItr) {
nodeMap[nItr] = addNode(other.getNodeCosts(nItr));
}
}
// for (Graph::ConstNodeItr nItr = other.nodesBegin(),
// nEnd = other.nodesEnd();
// nItr != nEnd; ++nItr) {
// nodeMap[nItr] = addNode(other.getNodeCosts(nItr));
// }
// }
}

View File

@ -52,7 +52,7 @@ namespace PBQP {
class HeuristicBase {
private:
typedef std::list<Graph::NodeItr> OptimalList;
typedef std::list<Graph::NodeId> OptimalList;
HeuristicSolverImpl<HImpl> &s;
Graph &g;
@ -63,8 +63,8 @@ namespace PBQP {
// Add the given node to the optimal reductions list. Keep an iterator to
// its location for fast removal.
void addToOptimalReductionList(Graph::NodeItr nItr) {
optimalList.insert(optimalList.end(), nItr);
void addToOptimalReductionList(Graph::NodeId nId) {
optimalList.insert(optimalList.end(), nId);
}
public:
@ -105,8 +105,8 @@ namespace PBQP {
/// criteria. Note however that your criteria for selecting optimal nodes
/// should be <i>at least</i> as strong as this. I.e. Nodes of degree 3 or
/// higher should not be selected under any circumstances.
bool shouldOptimallyReduce(Graph::NodeItr nItr) {
if (g.getNodeDegree(nItr) < 3)
bool shouldOptimallyReduce(Graph::NodeId nId) {
if (g.getNodeDegree(nId) < 3)
return true;
// else
return false;
@ -118,8 +118,8 @@ namespace PBQP {
/// You probably don't want to over-ride this, except perhaps to record
/// statistics before calling this implementation. HeuristicBase relies on
/// its behaviour.
void addToOptimalReduceList(Graph::NodeItr nItr) {
optimalList.push_back(nItr);
void addToOptimalReduceList(Graph::NodeId nId) {
optimalList.push_back(nId);
}
/// \brief Initialise the heuristic.
@ -132,10 +132,10 @@ namespace PBQP {
void setup() {
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
nItr != nEnd; ++nItr) {
if (impl().shouldOptimallyReduce(nItr)) {
addToOptimalReduceList(nItr);
if (impl().shouldOptimallyReduce(*nItr)) {
addToOptimalReduceList(*nItr);
} else {
impl().addToHeuristicReduceList(nItr);
impl().addToHeuristicReduceList(*nItr);
}
}
}
@ -150,13 +150,13 @@ namespace PBQP {
if (optimalList.empty())
return false;
Graph::NodeItr nItr = optimalList.front();
Graph::NodeId nId = optimalList.front();
optimalList.pop_front();
switch (s.getSolverDegree(nItr)) {
case 0: s.applyR0(nItr); break;
case 1: s.applyR1(nItr); break;
case 2: s.applyR2(nItr); break;
switch (s.getSolverDegree(nId)) {
case 0: s.applyR0(nId); break;
case 1: s.applyR1(nId); break;
case 2: s.applyR2(nId); break;
default: llvm_unreachable(
"Optimal reductions of degree > 2 nodes is invalid.");
}
@ -185,7 +185,7 @@ namespace PBQP {
/// \brief Add a node to the heuristic reduce list.
/// @param nItr Node iterator to add to the heuristic reduce list.
void addToHeuristicList(Graph::NodeItr nItr) {
void addToHeuristicList(Graph::NodeId nId) {
llvm_unreachable("Must be implemented in derived class.");
}
@ -200,19 +200,19 @@ namespace PBQP {
/// \brief Prepare a change in the costs on the given edge.
/// @param eItr Edge iterator.
void preUpdateEdgeCosts(Graph::EdgeItr eItr) {
void preUpdateEdgeCosts(Graph::EdgeId eId) {
llvm_unreachable("Must be implemented in derived class.");
}
/// \brief Handle the change in the costs on the given edge.
/// @param eItr Edge iterator.
void postUpdateEdgeCostts(Graph::EdgeItr eItr) {
void postUpdateEdgeCostts(Graph::EdgeId eId) {
llvm_unreachable("Must be implemented in derived class.");
}
/// \brief Handle the addition of a new edge into the PBQP graph.
/// @param eItr Edge iterator for the added edge.
void handleAddEdge(Graph::EdgeItr eItr) {
void handleAddEdge(Graph::EdgeId eId) {
llvm_unreachable("Must be implemented in derived class.");
}
@ -223,7 +223,7 @@ namespace PBQP {
/// Edges are frequently removed due to the removal of a node. This
/// method allows for the effect to be computed only for the remaining
/// node in the graph.
void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
llvm_unreachable("Must be implemented in derived class.");
}

View File

@ -40,7 +40,7 @@ namespace PBQP {
typedef typename HImpl::NodeData HeuristicNodeData;
typedef typename HImpl::EdgeData HeuristicEdgeData;
typedef std::list<Graph::EdgeItr> SolverEdges;
typedef std::list<Graph::EdgeId> SolverEdges;
public:
@ -55,9 +55,9 @@ namespace PBQP {
HeuristicNodeData& getHeuristicData() { return hData; }
SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) {
SolverEdgeItr addSolverEdge(Graph::EdgeId eId) {
++solverDegree;
return solverEdges.insert(solverEdges.end(), eItr);
return solverEdges.insert(solverEdges.end(), eId);
}
void removeSolverEdge(SolverEdgeItr seItr) {
@ -104,7 +104,7 @@ namespace PBQP {
Graph &g;
HImpl h;
Solution s;
std::vector<Graph::NodeItr> stack;
std::vector<Graph::NodeId> stack;
typedef std::list<NodeData> NodeDataList;
NodeDataList nodeDataList;
@ -127,15 +127,15 @@ namespace PBQP {
/// \brief Get the heuristic data attached to the given node.
/// @param nItr Node iterator.
/// @return The heuristic data attached to the given node.
HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
return getSolverNodeData(nItr).getHeuristicData();
HeuristicNodeData& getHeuristicNodeData(Graph::NodeId nId) {
return getSolverNodeData(nId).getHeuristicData();
}
/// \brief Get the heuristic data attached to the given edge.
/// @param eItr Edge iterator.
/// @return The heuristic data attached to the given node.
HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
return getSolverEdgeData(eItr).getHeuristicData();
HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
return getSolverEdgeData(eId).getHeuristicData();
}
/// \brief Begin iterator for the set of edges adjacent to the given node in
@ -143,8 +143,8 @@ namespace PBQP {
/// @param nItr Node iterator.
/// @return Begin iterator for the set of edges adjacent to the given node
/// in the solver graph.
SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) {
return getSolverNodeData(nItr).solverEdgesBegin();
SolverEdgeItr solverEdgesBegin(Graph::NodeId nId) {
return getSolverNodeData(nId).solverEdgesBegin();
}
/// \brief End iterator for the set of edges adjacent to the given node in
@ -152,8 +152,8 @@ namespace PBQP {
/// @param nItr Node iterator.
/// @return End iterator for the set of edges adjacent to the given node in
/// the solver graph.
SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) {
return getSolverNodeData(nItr).solverEdgesEnd();
SolverEdgeItr solverEdgesEnd(Graph::NodeId nId) {
return getSolverNodeData(nId).solverEdgesEnd();
}
/// \brief Remove a node from the solver graph.
@ -161,10 +161,10 @@ namespace PBQP {
///
/// Does <i>not</i> notify the heuristic of the removal. That should be
/// done manually if necessary.
void removeSolverEdge(Graph::EdgeItr eItr) {
EdgeData &eData = getSolverEdgeData(eItr);
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
&n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
void removeSolverEdge(Graph::EdgeId eId) {
EdgeData &eData = getSolverEdgeData(eId);
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
&n2Data = getSolverNodeData(g.getEdgeNode2(eId));
n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
@ -189,30 +189,30 @@ namespace PBQP {
/// \brief Add to the end of the stack.
/// @param nItr Node iterator to add to the reduction stack.
void pushToStack(Graph::NodeItr nItr) {
getSolverNodeData(nItr).clearSolverEdges();
stack.push_back(nItr);
void pushToStack(Graph::NodeId nId) {
getSolverNodeData(nId).clearSolverEdges();
stack.push_back(nId);
}
/// \brief Returns the solver degree of the given node.
/// @param nItr Node iterator for which degree is requested.
/// @return Node degree in the <i>solver</i> graph (not the original graph).
unsigned getSolverDegree(Graph::NodeItr nItr) {
return getSolverNodeData(nItr).getSolverDegree();
unsigned getSolverDegree(Graph::NodeId nId) {
return getSolverNodeData(nId).getSolverDegree();
}
/// \brief Set the solution of the given node.
/// @param nItr Node iterator to set solution for.
/// @param selection Selection for node.
void setSolution(const Graph::NodeItr &nItr, unsigned selection) {
s.setSelection(nItr, selection);
void setSolution(const Graph::NodeId &nId, unsigned selection) {
s.setSelection(nId, selection);
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
aeEnd = g.adjEdgesEnd(nItr);
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
aeEnd = g.adjEdgesEnd(nId);
aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr(*aeItr);
Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr));
getSolverNodeData(anItr).addSolverEdge(eItr);
Graph::EdgeId eId(*aeItr);
Graph::NodeId anId(g.getEdgeOtherNode(eId, nId));
getSolverNodeData(anId).addSolverEdge(eId);
}
}
@ -220,12 +220,12 @@ namespace PBQP {
/// @param nItr Node iterator for node to apply R0 to.
///
/// Node will be automatically pushed to the solver stack.
void applyR0(Graph::NodeItr nItr) {
assert(getSolverNodeData(nItr).getSolverDegree() == 0 &&
void applyR0(Graph::NodeId nId) {
assert(getSolverNodeData(nId).getSolverDegree() == 0 &&
"R0 applied to node with degree != 0.");
// Nothing to do. Just push the node onto the reduction stack.
pushToStack(nItr);
pushToStack(nId);
s.recordR0();
}
@ -234,20 +234,20 @@ namespace PBQP {
/// @param xnItr Node iterator for node to apply R1 to.
///
/// Node will be automatically pushed to the solver stack.
void applyR1(Graph::NodeItr xnItr) {
NodeData &nd = getSolverNodeData(xnItr);
void applyR1(Graph::NodeId xnId) {
NodeData &nd = getSolverNodeData(xnId);
assert(nd.getSolverDegree() == 1 &&
"R1 applied to node with degree != 1.");
Graph::EdgeItr eItr = *nd.solverEdgesBegin();
Graph::EdgeId eId = *nd.solverEdgesBegin();
const Matrix &eCosts = g.getEdgeCosts(eItr);
const Vector &xCosts = g.getNodeCosts(xnItr);
const Matrix &eCosts = g.getEdgeCosts(eId);
const Vector &xCosts = g.getNodeCosts(xnId);
// Duplicate a little to avoid transposing matrices.
if (xnItr == g.getEdgeNode1(eItr)) {
Graph::NodeItr ynItr = g.getEdgeNode2(eItr);
Vector &yCosts = g.getNodeCosts(ynItr);
if (xnId == g.getEdgeNode1(eId)) {
Graph::NodeId ynId = g.getEdgeNode2(eId);
Vector &yCosts = g.getNodeCosts(ynId);
for (unsigned j = 0; j < yCosts.getLength(); ++j) {
PBQPNum min = eCosts[0][j] + xCosts[0];
for (unsigned i = 1; i < xCosts.getLength(); ++i) {
@ -257,10 +257,10 @@ namespace PBQP {
}
yCosts[j] += min;
}
h.handleRemoveEdge(eItr, ynItr);
h.handleRemoveEdge(eId, ynId);
} else {
Graph::NodeItr ynItr = g.getEdgeNode1(eItr);
Vector &yCosts = g.getNodeCosts(ynItr);
Graph::NodeId ynId = g.getEdgeNode1(eId);
Vector &yCosts = g.getNodeCosts(ynId);
for (unsigned i = 0; i < yCosts.getLength(); ++i) {
PBQPNum min = eCosts[i][0] + xCosts[0];
for (unsigned j = 1; j < xCosts.getLength(); ++j) {
@ -270,12 +270,12 @@ namespace PBQP {
}
yCosts[i] += min;
}
h.handleRemoveEdge(eItr, ynItr);
h.handleRemoveEdge(eId, ynId);
}
removeSolverEdge(eItr);
removeSolverEdge(eId);
assert(nd.getSolverDegree() == 0 &&
"Degree 1 with edge removed should be 0.");
pushToStack(xnItr);
pushToStack(xnId);
s.recordR1();
}
@ -283,30 +283,30 @@ namespace PBQP {
/// @param xnItr Node iterator for node to apply R2 to.
///
/// Node will be automatically pushed to the solver stack.
void applyR2(Graph::NodeItr xnItr) {
assert(getSolverNodeData(xnItr).getSolverDegree() == 2 &&
void applyR2(Graph::NodeId xnId) {
assert(getSolverNodeData(xnId).getSolverDegree() == 2 &&
"R2 applied to node with degree != 2.");
NodeData &nd = getSolverNodeData(xnItr);
const Vector &xCosts = g.getNodeCosts(xnItr);
NodeData &nd = getSolverNodeData(xnId);
const Vector &xCosts = g.getNodeCosts(xnId);
SolverEdgeItr aeItr = nd.solverEdgesBegin();
Graph::EdgeItr yxeItr = *aeItr,
zxeItr = *(++aeItr);
Graph::EdgeId yxeId = *aeItr,
zxeId = *(++aeItr);
Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr),
znItr = g.getEdgeOtherNode(zxeItr, xnItr);
Graph::NodeId ynId = g.getEdgeOtherNode(yxeId, xnId),
znId = g.getEdgeOtherNode(zxeId, xnId);
bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr),
flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr);
bool flipEdge1 = (g.getEdgeNode1(yxeId) == xnId),
flipEdge2 = (g.getEdgeNode1(zxeId) == xnId);
const Matrix *yxeCosts = flipEdge1 ?
new Matrix(g.getEdgeCosts(yxeItr).transpose()) :
&g.getEdgeCosts(yxeItr);
new Matrix(g.getEdgeCosts(yxeId).transpose()) :
&g.getEdgeCosts(yxeId);
const Matrix *zxeCosts = flipEdge2 ?
new Matrix(g.getEdgeCosts(zxeItr).transpose()) :
&g.getEdgeCosts(zxeItr);
new Matrix(g.getEdgeCosts(zxeId).transpose()) :
&g.getEdgeCosts(zxeId);
unsigned xLen = xCosts.getLength(),
yLen = yxeCosts->getRows(),
@ -333,27 +333,27 @@ namespace PBQP {
if (flipEdge2)
delete zxeCosts;
Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr);
Graph::EdgeId yzeId = g.findEdge(ynId, znId);
bool addedEdge = false;
if (yzeItr == g.edgesEnd()) {
yzeItr = g.addEdge(ynItr, znItr, delta);
if (yzeId == g.invalidEdgeId()) {
yzeId = g.addEdge(ynId, znId, delta);
addedEdge = true;
} else {
Matrix &yzeCosts = g.getEdgeCosts(yzeItr);
h.preUpdateEdgeCosts(yzeItr);
if (ynItr == g.getEdgeNode1(yzeItr)) {
Matrix &yzeCosts = g.getEdgeCosts(yzeId);
h.preUpdateEdgeCosts(yzeId);
if (ynId == g.getEdgeNode1(yzeId)) {
yzeCosts += delta;
} else {
yzeCosts += delta.transpose();
}
}
bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr);
bool nullCostEdge = tryNormaliseEdgeMatrix(yzeId);
if (!addedEdge) {
// If we modified the edge costs let the heuristic know.
h.postUpdateEdgeCosts(yzeItr);
h.postUpdateEdgeCosts(yzeId);
}
if (nullCostEdge) {
@ -361,26 +361,26 @@ namespace PBQP {
if (!addedEdge) {
// We didn't just add it, so we need to notify the heuristic
// and remove it from the solver.
h.handleRemoveEdge(yzeItr, ynItr);
h.handleRemoveEdge(yzeItr, znItr);
removeSolverEdge(yzeItr);
h.handleRemoveEdge(yzeId, ynId);
h.handleRemoveEdge(yzeId, znId);
removeSolverEdge(yzeId);
}
g.removeEdge(yzeItr);
g.removeEdge(yzeId);
} else if (addedEdge) {
// If the edge was added, and non-null, finish setting it up, add it to
// the solver & notify heuristic.
edgeDataList.push_back(EdgeData());
g.setEdgeData(yzeItr, &edgeDataList.back());
addSolverEdge(yzeItr);
h.handleAddEdge(yzeItr);
g.setEdgeData(yzeId, &edgeDataList.back());
addSolverEdge(yzeId);
h.handleAddEdge(yzeId);
}
h.handleRemoveEdge(yxeItr, ynItr);
removeSolverEdge(yxeItr);
h.handleRemoveEdge(zxeItr, znItr);
removeSolverEdge(zxeItr);
h.handleRemoveEdge(yxeId, ynId);
removeSolverEdge(yxeId);
h.handleRemoveEdge(zxeId, znId);
removeSolverEdge(zxeId);
pushToStack(xnItr);
pushToStack(xnId);
s.recordR2();
}
@ -391,21 +391,21 @@ namespace PBQP {
private:
NodeData& getSolverNodeData(Graph::NodeItr nItr) {
return *static_cast<NodeData*>(g.getNodeData(nItr));
NodeData& getSolverNodeData(Graph::NodeId nId) {
return *static_cast<NodeData*>(g.getNodeData(nId));
}
EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) {
return *static_cast<EdgeData*>(g.getEdgeData(eItr));
EdgeData& getSolverEdgeData(Graph::EdgeId eId) {
return *static_cast<EdgeData*>(g.getEdgeData(eId));
}
void addSolverEdge(Graph::EdgeItr eItr) {
EdgeData &eData = getSolverEdgeData(eItr);
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
&n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
void addSolverEdge(Graph::EdgeId eId) {
EdgeData &eData = getSolverEdgeData(eId);
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
&n2Data = getSolverNodeData(g.getEdgeNode2(eId));
eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr));
eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr));
eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eId));
eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eId));
}
void setup() {
@ -417,15 +417,15 @@ namespace PBQP {
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
nItr != nEnd; ++nItr) {
nodeDataList.push_back(NodeData());
g.setNodeData(nItr, &nodeDataList.back());
g.setNodeData(*nItr, &nodeDataList.back());
}
// Create edge data objects.
for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
eItr != eEnd; ++eItr) {
edgeDataList.push_back(EdgeData());
g.setEdgeData(eItr, &edgeDataList.back());
addSolverEdge(eItr);
g.setEdgeData(*eItr, &edgeDataList.back());
addSolverEdge(*eItr);
}
}
@ -441,28 +441,30 @@ namespace PBQP {
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
nItr != nEnd; ++nItr) {
if (g.getNodeCosts(nItr).getLength() == 1) {
Graph::NodeId nId = *nItr;
std::vector<Graph::EdgeItr> edgesToRemove;
if (g.getNodeCosts(nId).getLength() == 1) {
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
aeEnd = g.adjEdgesEnd(nItr);
std::vector<Graph::EdgeId> edgesToRemove;
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
aeEnd = g.adjEdgesEnd(nId);
aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr = *aeItr;
Graph::EdgeId eId = *aeItr;
if (g.getEdgeNode1(eItr) == nItr) {
Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr);
g.getNodeCosts(otherNodeItr) +=
g.getEdgeCosts(eItr).getRowAsVector(0);
if (g.getEdgeNode1(eId) == nId) {
Graph::NodeId otherNodeId = g.getEdgeNode2(eId);
g.getNodeCosts(otherNodeId) +=
g.getEdgeCosts(eId).getRowAsVector(0);
}
else {
Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr);
g.getNodeCosts(otherNodeItr) +=
g.getEdgeCosts(eItr).getColAsVector(0);
Graph::NodeId otherNodeId = g.getEdgeNode1(eId);
g.getNodeCosts(otherNodeId) +=
g.getEdgeCosts(eId).getColAsVector(0);
}
edgesToRemove.push_back(eItr);
edgesToRemove.push_back(eId);
}
if (!edgesToRemove.empty())
@ -477,12 +479,12 @@ namespace PBQP {
}
void eliminateIndependentEdges() {
std::vector<Graph::EdgeItr> edgesToProcess;
std::vector<Graph::EdgeId> edgesToProcess;
unsigned numEliminated = 0;
for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
eItr != eEnd; ++eItr) {
edgesToProcess.push_back(eItr);
edgesToProcess.push_back(*eItr);
}
while (!edgesToProcess.empty()) {
@ -492,21 +494,21 @@ namespace PBQP {
}
}
bool tryToEliminateEdge(Graph::EdgeItr eItr) {
if (tryNormaliseEdgeMatrix(eItr)) {
g.removeEdge(eItr);
bool tryToEliminateEdge(Graph::EdgeId eId) {
if (tryNormaliseEdgeMatrix(eId)) {
g.removeEdge(eId);
return true;
}
return false;
}
bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) {
bool tryNormaliseEdgeMatrix(Graph::EdgeId &eId) {
const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
Matrix &edgeCosts = g.getEdgeCosts(eItr);
Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)),
&vCosts = g.getNodeCosts(g.getEdgeNode2(eItr));
Matrix &edgeCosts = g.getEdgeCosts(eId);
Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eId)),
&vCosts = g.getNodeCosts(g.getEdgeNode2(eId));
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
PBQPNum rowMin = infinity;
@ -554,34 +556,34 @@ namespace PBQP {
}
}
void computeSolution(Graph::NodeItr nItr) {
void computeSolution(Graph::NodeId nId) {
NodeData &nodeData = getSolverNodeData(nItr);
NodeData &nodeData = getSolverNodeData(nId);
Vector v(g.getNodeCosts(nItr));
Vector v(g.getNodeCosts(nId));
// Solve based on existing solved edges.
for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
solvedEdgeEnd = nodeData.solverEdgesEnd();
solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
Graph::EdgeItr eItr(*solvedEdgeItr);
Matrix &edgeCosts = g.getEdgeCosts(eItr);
Graph::EdgeId eId(*solvedEdgeItr);
Matrix &edgeCosts = g.getEdgeCosts(eId);
if (nItr == g.getEdgeNode1(eItr)) {
Graph::NodeItr adjNode(g.getEdgeNode2(eItr));
if (nId == g.getEdgeNode1(eId)) {
Graph::NodeId adjNode(g.getEdgeNode2(eId));
unsigned adjSolution = s.getSelection(adjNode);
v += edgeCosts.getColAsVector(adjSolution);
}
else {
Graph::NodeItr adjNode(g.getEdgeNode1(eItr));
Graph::NodeId adjNode(g.getEdgeNode1(eId));
unsigned adjSolution = s.getSelection(adjNode);
v += edgeCosts.getRowAsVector(adjSolution);
}
}
setSolution(nItr, v.minIndex());
setSolution(nId, v.minIndex());
}
void cleanup() {

View File

@ -47,8 +47,8 @@ namespace PBQP {
class LinkDegreeComparator {
public:
LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {}
bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const {
if (s->getSolverDegree(n1Itr) > s->getSolverDegree(n2Itr))
bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
if (s->getSolverDegree(n1Id) > s->getSolverDegree(n2Id))
return true;
return false;
}
@ -60,12 +60,12 @@ namespace PBQP {
public:
SpillCostComparator(HeuristicSolverImpl<Briggs> &s)
: s(&s), g(&s.getGraph()) {}
bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const {
const PBQP::Vector &cv1 = g->getNodeCosts(n1Itr);
const PBQP::Vector &cv2 = g->getNodeCosts(n2Itr);
bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
const PBQP::Vector &cv1 = g->getNodeCosts(n1Id);
const PBQP::Vector &cv2 = g->getNodeCosts(n2Id);
PBQPNum cost1 = cv1[0] / s->getSolverDegree(n1Itr);
PBQPNum cost2 = cv2[0] / s->getSolverDegree(n2Itr);
PBQPNum cost1 = cv1[0] / s->getSolverDegree(n1Id);
PBQPNum cost2 = cv2[0] / s->getSolverDegree(n2Id);
if (cost1 < cost2)
return true;
@ -77,10 +77,10 @@ namespace PBQP {
Graph *g;
};
typedef std::list<Graph::NodeItr> RNAllocableList;
typedef std::list<Graph::NodeId> RNAllocableList;
typedef RNAllocableList::iterator RNAllocableListItr;
typedef std::list<Graph::NodeItr> RNUnallocableList;
typedef std::list<Graph::NodeId> RNUnallocableList;
typedef RNUnallocableList::iterator RNUnallocableListItr;
public:
@ -123,8 +123,8 @@ namespace PBQP {
/// infinite are checked for allocability first. Allocable nodes may be
/// optimally reduced, but nodes whose allocability cannot be proven are
/// selected for heuristic reduction instead.
bool shouldOptimallyReduce(Graph::NodeItr nItr) {
if (getSolver().getSolverDegree(nItr) < 3) {
bool shouldOptimallyReduce(Graph::NodeId nId) {
if (getSolver().getSolverDegree(nId) < 3) {
return true;
}
// else
@ -133,14 +133,14 @@ namespace PBQP {
/// \brief Add a node to the heuristic reduce list.
/// @param nItr Node iterator to add to the heuristic reduce list.
void addToHeuristicReduceList(Graph::NodeItr nItr) {
NodeData &nd = getHeuristicNodeData(nItr);
initializeNode(nItr);
void addToHeuristicReduceList(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nId);
initializeNode(nId);
nd.isHeuristic = true;
if (nd.isAllocable) {
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr);
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
} else {
nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nItr);
nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nId);
}
}
@ -159,19 +159,19 @@ namespace PBQP {
RNAllocableListItr rnaItr =
min_element(rnAllocableList.begin(), rnAllocableList.end(),
LinkDegreeComparator(getSolver()));
Graph::NodeItr nItr = *rnaItr;
Graph::NodeId nId = *rnaItr;
rnAllocableList.erase(rnaItr);
handleRemoveNode(nItr);
getSolver().pushToStack(nItr);
handleRemoveNode(nId);
getSolver().pushToStack(nId);
return true;
} else if (!rnUnallocableList.empty()) {
RNUnallocableListItr rnuItr =
min_element(rnUnallocableList.begin(), rnUnallocableList.end(),
SpillCostComparator(getSolver()));
Graph::NodeItr nItr = *rnuItr;
Graph::NodeId nId = *rnuItr;
rnUnallocableList.erase(rnuItr);
handleRemoveNode(nItr);
getSolver().pushToStack(nItr);
handleRemoveNode(nId);
getSolver().pushToStack(nId);
return true;
}
// else
@ -180,28 +180,28 @@ namespace PBQP {
/// \brief Prepare a change in the costs on the given edge.
/// @param eItr Edge iterator.
void preUpdateEdgeCosts(Graph::EdgeItr eItr) {
void preUpdateEdgeCosts(Graph::EdgeId eId) {
Graph &g = getGraph();
Graph::NodeItr n1Itr = g.getEdgeNode1(eItr),
n2Itr = g.getEdgeNode2(eItr);
NodeData &n1 = getHeuristicNodeData(n1Itr),
&n2 = getHeuristicNodeData(n2Itr);
Graph::NodeId n1Id = g.getEdgeNode1(eId),
n2Id = g.getEdgeNode2(eId);
NodeData &n1 = getHeuristicNodeData(n1Id),
&n2 = getHeuristicNodeData(n2Id);
if (n1.isHeuristic)
subtractEdgeContributions(eItr, getGraph().getEdgeNode1(eItr));
subtractEdgeContributions(eId, getGraph().getEdgeNode1(eId));
if (n2.isHeuristic)
subtractEdgeContributions(eItr, getGraph().getEdgeNode2(eItr));
subtractEdgeContributions(eId, getGraph().getEdgeNode2(eId));
EdgeData &ed = getHeuristicEdgeData(eItr);
EdgeData &ed = getHeuristicEdgeData(eId);
ed.isUpToDate = false;
}
/// \brief Handle the change in the costs on the given edge.
/// @param eItr Edge iterator.
void postUpdateEdgeCosts(Graph::EdgeItr eItr) {
void postUpdateEdgeCosts(Graph::EdgeId eId) {
// This is effectively the same as adding a new edge now, since
// we've factored out the costs of the old one.
handleAddEdge(eItr);
handleAddEdge(eId);
}
/// \brief Handle the addition of a new edge into the PBQP graph.
@ -210,12 +210,12 @@ namespace PBQP {
/// Updates allocability of any nodes connected by this edge which are
/// being managed by the heuristic. If allocability changes they are
/// moved to the appropriate list.
void handleAddEdge(Graph::EdgeItr eItr) {
void handleAddEdge(Graph::EdgeId eId) {
Graph &g = getGraph();
Graph::NodeItr n1Itr = g.getEdgeNode1(eItr),
n2Itr = g.getEdgeNode2(eItr);
NodeData &n1 = getHeuristicNodeData(n1Itr),
&n2 = getHeuristicNodeData(n2Itr);
Graph::NodeId n1Id = g.getEdgeNode1(eId),
n2Id = g.getEdgeNode2(eId);
NodeData &n1 = getHeuristicNodeData(n1Id),
&n2 = getHeuristicNodeData(n2Id);
// If neither node is managed by the heuristic there's nothing to be
// done.
@ -223,29 +223,29 @@ namespace PBQP {
return;
// Ok - we need to update at least one node.
computeEdgeContributions(eItr);
computeEdgeContributions(eId);
// Update node 1 if it's managed by the heuristic.
if (n1.isHeuristic) {
bool n1WasAllocable = n1.isAllocable;
addEdgeContributions(eItr, n1Itr);
updateAllocability(n1Itr);
addEdgeContributions(eId, n1Id);
updateAllocability(n1Id);
if (n1WasAllocable && !n1.isAllocable) {
rnAllocableList.erase(n1.rnaItr);
n1.rnuItr =
rnUnallocableList.insert(rnUnallocableList.end(), n1Itr);
rnUnallocableList.insert(rnUnallocableList.end(), n1Id);
}
}
// Likewise for node 2.
if (n2.isHeuristic) {
bool n2WasAllocable = n2.isAllocable;
addEdgeContributions(eItr, n2Itr);
updateAllocability(n2Itr);
addEdgeContributions(eId, n2Id);
updateAllocability(n2Id);
if (n2WasAllocable && !n2.isAllocable) {
rnAllocableList.erase(n2.rnaItr);
n2.rnuItr =
rnUnallocableList.insert(rnUnallocableList.end(), n2Itr);
rnUnallocableList.insert(rnUnallocableList.end(), n2Id);
}
}
}
@ -256,27 +256,27 @@ namespace PBQP {
///
/// Updates allocability of the given node and, if appropriate, moves the
/// node to a new list.
void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
NodeData &nd = getHeuristicNodeData(nItr);
void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
NodeData &nd =getHeuristicNodeData(nId);
// If the node is not managed by the heuristic there's nothing to be
// done.
if (!nd.isHeuristic)
return;
EdgeData &ed = getHeuristicEdgeData(eItr);
EdgeData &ed = getHeuristicEdgeData(eId);
(void)ed;
assert(ed.isUpToDate && "Edge data is not up to date.");
// Update node.
bool ndWasAllocable = nd.isAllocable;
subtractEdgeContributions(eItr, nItr);
updateAllocability(nItr);
subtractEdgeContributions(eId, nId);
updateAllocability(nId);
// If the node has gone optimal...
if (shouldOptimallyReduce(nItr)) {
if (shouldOptimallyReduce(nId)) {
nd.isHeuristic = false;
addToOptimalReduceList(nItr);
addToOptimalReduceList(nId);
if (ndWasAllocable) {
rnAllocableList.erase(nd.rnaItr);
} else {
@ -287,30 +287,30 @@ namespace PBQP {
// from "unallocable" to "allocable".
if (!ndWasAllocable && nd.isAllocable) {
rnUnallocableList.erase(nd.rnuItr);
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr);
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
}
}
}
private:
NodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
return getSolver().getHeuristicNodeData(nItr);
NodeData& getHeuristicNodeData(Graph::NodeId nId) {
return getSolver().getHeuristicNodeData(nId);
}
EdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
return getSolver().getHeuristicEdgeData(eItr);
EdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
return getSolver().getHeuristicEdgeData(eId);
}
// Work out what this edge will contribute to the allocability of the
// nodes connected to it.
void computeEdgeContributions(Graph::EdgeItr eItr) {
EdgeData &ed = getHeuristicEdgeData(eItr);
void computeEdgeContributions(Graph::EdgeId eId) {
EdgeData &ed = getHeuristicEdgeData(eId);
if (ed.isUpToDate)
return; // Edge data is already up to date.
Matrix &eCosts = getGraph().getEdgeCosts(eItr);
Matrix &eCosts = getGraph().getEdgeCosts(eId);
unsigned numRegs = eCosts.getRows() - 1,
numReverseRegs = eCosts.getCols() - 1;
@ -352,15 +352,15 @@ namespace PBQP {
// numDenied and safe members. No action is taken other than to update
// these member values. Once updated these numbers can be used by clients
// to update the node's allocability.
void addEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
EdgeData &ed = getHeuristicEdgeData(eItr);
void addEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
EdgeData &ed = getHeuristicEdgeData(eId);
assert(ed.isUpToDate && "Using out-of-date edge numbers.");
NodeData &nd = getHeuristicNodeData(nItr);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr);
bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
EdgeData::UnsafeArray &unsafe =
nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
@ -379,15 +379,15 @@ namespace PBQP {
// numDenied and safe members. No action is taken other than to update
// these member values. Once updated these numbers can be used by clients
// to update the node's allocability.
void subtractEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
EdgeData &ed = getHeuristicEdgeData(eItr);
void subtractEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
EdgeData &ed = getHeuristicEdgeData(eId);
assert(ed.isUpToDate && "Using out-of-date edge numbers.");
NodeData &nd = getHeuristicNodeData(nItr);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr);
bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
EdgeData::UnsafeArray &unsafe =
nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
@ -402,22 +402,22 @@ namespace PBQP {
}
}
void updateAllocability(Graph::NodeItr nItr) {
NodeData &nd = getHeuristicNodeData(nItr);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
void updateAllocability(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0;
}
void initializeNode(Graph::NodeItr nItr) {
NodeData &nd = getHeuristicNodeData(nItr);
void initializeNode(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nId);
if (nd.isInitialized)
return; // Node data is already up to date.
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
nd.numDenied = 0;
const Vector& nCosts = getGraph().getNodeCosts(nItr);
const Vector& nCosts = getGraph().getNodeCosts(nId);
for (unsigned i = 1; i < nCosts.getLength(); ++i) {
if (nCosts[i] == std::numeric_limits<PBQPNum>::infinity())
++nd.numDenied;
@ -428,27 +428,27 @@ namespace PBQP {
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nItr),
aeEnd = getSolver().solverEdgesEnd(nItr);
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nId),
aeEnd = getSolver().solverEdgesEnd(nId);
aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr = *aeItr;
computeEdgeContributions(eItr);
addEdgeContributions(eItr, nItr);
Graph::EdgeId eId = *aeItr;
computeEdgeContributions(eId);
addEdgeContributions(eId, nId);
}
updateAllocability(nItr);
updateAllocability(nId);
nd.isInitialized = true;
}
void handleRemoveNode(Graph::NodeItr xnItr) {
void handleRemoveNode(Graph::NodeId xnId) {
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
std::vector<Graph::EdgeItr> edgesToRemove;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnItr),
aeEnd = getSolver().solverEdgesEnd(xnItr);
std::vector<Graph::EdgeId> edgesToRemove;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnId),
aeEnd = getSolver().solverEdgesEnd(xnId);
aeItr != aeEnd; ++aeItr) {
Graph::NodeItr ynItr = getGraph().getEdgeOtherNode(*aeItr, xnItr);
handleRemoveEdge(*aeItr, ynItr);
Graph::NodeId ynId = getGraph().getEdgeOtherNode(*aeItr, xnId);
handleRemoveEdge(*aeItr, ynId);
edgesToRemove.push_back(*aeItr);
}
while (!edgesToRemove.empty()) {

View File

@ -26,8 +26,7 @@ namespace PBQP {
class Solution {
private:
typedef std::map<Graph::ConstNodeItr, unsigned,
NodeItrComparator> SelectionsMap;
typedef std::map<Graph::NodeId, unsigned> SelectionsMap;
SelectionsMap selections;
unsigned r0Reductions, r1Reductions, r2Reductions, rNReductions;
@ -73,15 +72,15 @@ namespace PBQP {
/// \brief Set the selection for a given node.
/// @param nItr Node iterator.
/// @param selection Selection for nItr.
void setSelection(Graph::NodeItr nItr, unsigned selection) {
selections[nItr] = selection;
void setSelection(Graph::NodeId nodeId, unsigned selection) {
selections[nodeId] = selection;
}
/// \brief Get a node's selection.
/// @param nItr Node iterator.
/// @return The selection for nItr;
unsigned getSelection(Graph::ConstNodeItr nItr) const {
SelectionsMap::const_iterator sItr = selections.find(nItr);
unsigned getSelection(Graph::NodeId nodeId) const {
SelectionsMap::const_iterator sItr = selections.find(nodeId);
assert(sItr != selections.end() && "No selection for node.");
return sItr->second;
}

View File

@ -52,22 +52,22 @@ namespace llvm {
/// PBQPBuilder you are unlikely to need this: Nodes and options for all
/// vregs will already have been set up for you by the base class.
template <typename AllowedRegsItr>
void recordVReg(unsigned vreg, PBQP::Graph::NodeItr node,
void recordVReg(unsigned vreg, PBQP::Graph::NodeId nodeId,
AllowedRegsItr arBegin, AllowedRegsItr arEnd) {
assert(node2VReg.find(node) == node2VReg.end() && "Re-mapping node.");
assert(node2VReg.find(nodeId) == node2VReg.end() && "Re-mapping node.");
assert(vreg2Node.find(vreg) == vreg2Node.end() && "Re-mapping vreg.");
assert(allowedSets[vreg].empty() && "vreg already has pregs.");
node2VReg[node] = vreg;
vreg2Node[vreg] = node;
node2VReg[nodeId] = vreg;
vreg2Node[vreg] = nodeId;
std::copy(arBegin, arEnd, std::back_inserter(allowedSets[vreg]));
}
/// Get the virtual register corresponding to the given PBQP node.
unsigned getVRegForNode(PBQP::Graph::ConstNodeItr node) const;
unsigned getVRegForNode(PBQP::Graph::NodeId nodeId) const;
/// Get the PBQP node corresponding to the given virtual register.
PBQP::Graph::NodeItr getNodeForVReg(unsigned vreg) const;
PBQP::Graph::NodeId getNodeForVReg(unsigned vreg) const;
/// Returns true if the given PBQP option represents a physical register,
/// false otherwise.
@ -92,9 +92,8 @@ namespace llvm {
private:
typedef std::map<PBQP::Graph::ConstNodeItr, unsigned,
PBQP::NodeItrComparator> Node2VReg;
typedef DenseMap<unsigned, PBQP::Graph::NodeItr> VReg2Node;
typedef std::map<PBQP::Graph::NodeId, unsigned> Node2VReg;
typedef DenseMap<unsigned, PBQP::Graph::NodeId> VReg2Node;
typedef DenseMap<unsigned, AllowedSet> AllowedSetMap;
PBQP::Graph graph;

View File

@ -158,13 +158,13 @@ char RegAllocPBQP::ID = 0;
} // End anonymous namespace.
unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::NodeId node) const {
Node2VReg::const_iterator vregItr = node2VReg.find(node);
assert(vregItr != node2VReg.end() && "No vreg for node.");
return vregItr->second;
}
PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
PBQP::Graph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
assert(nodeItr != vreg2Node.end() && "No node for vreg.");
return nodeItr->second;
@ -247,7 +247,7 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
}
// Construct the node.
PBQP::Graph::NodeItr node =
PBQP::Graph::NodeId node =
g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
// Record the mapping and allowed set in the problem.
@ -273,7 +273,7 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
assert(!l2.empty() && "Empty interval in vreg set?");
if (l1.overlaps(l2)) {
PBQP::Graph::EdgeItr edge =
PBQP::Graph::EdgeId edge =
g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
@ -364,16 +364,16 @@ PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
}
if (pregOpt < allowed.size()) {
++pregOpt; // +1 to account for spill option.
PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
PBQP::Graph::NodeId node = p->getNodeForVReg(src);
addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
}
} else {
const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
if (edge == g.edgesEnd()) {
PBQP::Graph::NodeId node1 = p->getNodeForVReg(dst);
PBQP::Graph::NodeId node2 = p->getNodeForVReg(src);
PBQP::Graph::EdgeId edge = g.findEdge(node1, node2);
if (edge == g.invalidEdgeId()) {
edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
allowed2->size() + 1,
0));
@ -477,11 +477,11 @@ bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Graph &g = problem.getGraph();
// Iterate over the nodes mapping the PBQP solution to a register
// assignment.
for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
nodeEnd = g.nodesEnd();
node != nodeEnd; ++node) {
unsigned vreg = problem.getVRegForNode(node);
unsigned alloc = solution.getSelection(node);
for (PBQP::Graph::NodeItr nodeItr = g.nodesBegin(),
nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
unsigned vreg = problem.getVRegForNode(*nodeItr);
unsigned alloc = solution.getSelection(*nodeItr);
if (problem.isPRegOption(vreg, alloc)) {
unsigned preg = problem.getPRegForOption(vreg, alloc);