Addition of the PPC32 Pattern ISel. While it is far from complete, it will

be brought up to parity with the current simple ISel in the coming days.
Currently, -pattern-isel is required to trigger it.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20805 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nate Begeman 2005-03-24 04:41:43 +00:00
parent 85fdeb233e
commit a9795f81e9
3 changed files with 761 additions and 0 deletions

View File

@ -24,6 +24,7 @@ class TargetMachine;
FunctionPass *createPPCBranchSelectionPass();
FunctionPass *createPPC32ISelSimple(TargetMachine &TM);
FunctionPass *createPPC32ISelPattern(TargetMachine &TM);
FunctionPass *createPPC64ISelSimple(TargetMachine &TM);
FunctionPass *createDarwinAsmPrinter(std::ostream &OS, TargetMachine &TM);
FunctionPass *createAIXAsmPrinter(std::ostream &OS, TargetMachine &TM);

View File

@ -0,0 +1,756 @@
//===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for 32 bit PowerPC.
//
//===----------------------------------------------------------------------===//
#include "PowerPC.h"
#include "PowerPCInstrBuilder.h"
#include "PowerPCInstrInfo.h"
#include "PPC32RegisterInfo.h"
#include "llvm/Constants.h" // FIXME: REMOVE
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/Statistic.h"
#include <set>
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface
namespace {
class PPC32TargetLowering : public TargetLowering {
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
int ReturnAddrIndex; // FrameIndex for return slot.
public:
PPC32TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
// Set up the TargetLowering object.
// Set up the register classes.
addRegisterClass(MVT::i32, PPC32::GPRCRegisterClass);
addRegisterClass(MVT::f32, PPC32::GPRCRegisterClass);
addRegisterClass(MVT::f64, PPC32::FPRCRegisterClass);
computeRegisterProperties();
}
/// LowerArguments - This hook must be implemented to indicate how we should
/// lower the arguments for the specified function, into the specified DAG.
virtual std::vector<SDOperand>
LowerArguments(Function &F, SelectionDAG &DAG);
/// LowerCallTo - This hook lowers an abstract call to a function into an
/// actual call.
virtual std::pair<SDOperand, SDOperand>
LowerCallTo(SDOperand Chain, const Type *RetTy, SDOperand Callee,
ArgListTy &Args, SelectionDAG &DAG);
virtual std::pair<SDOperand, SDOperand>
LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
virtual std::pair<SDOperand,SDOperand>
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
const Type *ArgTy, SelectionDAG &DAG);
virtual std::pair<SDOperand, SDOperand>
LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG);
};
}
std::vector<SDOperand>
PPC32TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
//
// add beautiful description of PPC stack frame format, or at least some docs
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineBasicBlock& BB = MF.front();
std::vector<SDOperand> ArgValues;
// Due to the rather complicated nature of the PowerPC ABI, rather than a
// fixed size array of physical args, for the sake of simplicity let the STL
// handle tracking them for us.
std::vector<unsigned> argVR, argPR, argOp;
unsigned ArgOffset = 24;
unsigned GPR_remaining = 8;
unsigned FPR_remaining = 13;
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
// Add DAG nodes to load the arguments... On entry to a function on PPC,
// the arguments start at offset 24, although they are likely to be passed
// in registers.
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
SDOperand newroot, argt;
unsigned ObjSize;
bool needsLoad = false;
MVT::ValueType ObjectVT = getValueType(I->getType());
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
ObjSize = 4;
if (GPR_remaining > 0) {
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
unsigned virtReg =
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32));
argt = newroot = DAG.getCopyFromReg(virtReg, MVT::i32, DAG.getRoot());
if (ObjectVT != MVT::i32)
argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot);
argVR.push_back(virtReg);
argPR.push_back(GPR[GPR_idx]);
argOp.push_back(PPC::OR);
} else {
needsLoad = true;
}
break;
case MVT::i64: ObjSize = 8;
if (GPR_remaining > 1) {
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32));
unsigned virtReg =
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32))-1;
// FIXME: is this correct?
argt = newroot = DAG.getCopyFromReg(virtReg, MVT::i32, DAG.getRoot());
argt = DAG.getCopyFromReg(virtReg+1, MVT::i32, newroot);
// Push the arguments for emitting into BB later
argVR.push_back(virtReg); argVR.push_back(virtReg+1);
argPR.push_back(GPR[GPR_idx]); argPR.push_back(GPR[GPR_idx+1]);
argOp.push_back(PPC::OR); argOp.push_back(PPC::OR);
} else {
needsLoad = true;
}
break;
case MVT::f32: ObjSize = 4;
case MVT::f64: ObjSize = 8;
if (FPR_remaining > 0) {
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
unsigned virtReg =
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(ObjectVT));
argt = newroot = DAG.getCopyFromReg(virtReg, ObjectVT, DAG.getRoot());
argVR.push_back(virtReg);
argPR.push_back(FPR[FPR_idx]);
argOp.push_back(PPC::FMR);
--FPR_remaining;
++FPR_idx;
} else {
needsLoad = true;
}
break;
}
// We need to load the argument to a virtual register if we determined above
// that we ran out of physical registers of the appropriate type
if (needsLoad) {
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN);
}
// Every 4 bytes of argument space consumes one of the GPRs available for
// argument passing.
if (GPR_remaining > 0) {
unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
GPR_remaining -= delta;
GPR_idx += delta;
}
ArgOffset += ObjSize;
DAG.setRoot(newroot.getValue(1));
ArgValues.push_back(argt);
}
for (int i = 0, count = argVR.size(); i < count; ++i) {
if (argOp[i] == PPC::FMR)
BuildMI(&BB, argOp[i], 1, argVR[i]).addReg(argPR[i]);
else
BuildMI(&BB, argOp[i], 2, argVR[i]).addReg(argPR[i]).addReg(argPR[i]);
}
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (F.isVarArg())
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
return ArgValues;
}
std::pair<SDOperand, SDOperand>
PPC32TargetLowering::LowerCallTo(SDOperand Chain,
const Type *RetTy, SDOperand Callee,
ArgListTy &Args, SelectionDAG &DAG) {
// FIXME
int NumBytes = 56;
Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
std::vector<SDOperand> args_to_use;
for (unsigned i = 0, e = Args.size(); i != e; ++i)
{
switch (getValueType(Args[i].second)) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f64:
case MVT::f32:
break;
}
args_to_use.push_back(Args[i].first);
}
std::vector<MVT::ValueType> RetVals;
MVT::ValueType RetTyVT = getValueType(RetTy);
if (RetTyVT != MVT::isVoid)
RetVals.push_back(RetTyVT);
RetVals.push_back(MVT::Other);
SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
Chain, Callee, args_to_use), 0);
Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
return std::make_pair(TheCall, Chain);
}
std::pair<SDOperand, SDOperand>
PPC32TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
//vastart just returns the address of the VarArgsFrameIndex slot.
return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain);
}
std::pair<SDOperand,SDOperand> PPC32TargetLowering::
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
const Type *ArgTy, SelectionDAG &DAG) {
abort();
}
std::pair<SDOperand, SDOperand> PPC32TargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG) {
abort();
}
namespace {
//===--------------------------------------------------------------------===//
/// ISel - PPC32 specific code to select PPC32 machine instructions for
/// SelectionDAG operations.
//===--------------------------------------------------------------------===//
class ISel : public SelectionDAGISel {
/// Comment Here.
PPC32TargetLowering PPC32Lowering;
/// ExprMap - As shared expressions are codegen'd, we keep track of which
/// vreg the value is produced in, so we only emit one copy of each compiled
/// tree.
std::map<SDOperand, unsigned> ExprMap;
public:
ISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM)
{}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
// Codegen the basic block.
Select(DAG.getRoot());
// Clear state used for selection.
ExprMap.clear();
}
unsigned SelectExpr(SDOperand N);
unsigned SelectExprFP(SDOperand N, unsigned Result);
void Select(SDOperand N);
void SelectAddr(SDOperand N, unsigned& Reg, int& offset);
void SelectBranchCC(SDOperand N);
};
/// canUseAsImmediateForOpcode - This method returns a value indicating whether
/// the ConstantSDNode N can be used as an immediate to Opcode. The return
/// values are either 0, 1 or 2. 0 indicates that either N is not a
/// ConstantSDNode, or is not suitable for use by that opcode. A return value
/// of 1 indicates that the constant may be used in normal immediate form. A
/// return value of 2 indicates that the constant may be used in shifted
/// immediate form. If the return value is nonzero, the constant value is
/// placed in Imm.
///
static unsigned canUseAsImmediateForOpcode(SDOperand N, unsigned Opcode,
unsigned& Imm) {
if (N.getOpcode() != ISD::Constant) return 0;
int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
switch(Opcode) {
default: return 0;
case ISD::ADD:
if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
break;
case ISD::AND:
case ISD::XOR:
case ISD::OR:
if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; }
if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
break;
}
return 0;
}
}
//Check to see if the load is a constant offset from a base register
void ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset)
{
Reg = SelectExpr(N);
offset = 0;
return;
}
void ISel::SelectBranchCC(SDOperand N)
{
assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???");
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
unsigned Opc;
Select(N.getOperand(0)); //chain
SDOperand CC = N.getOperand(1);
//Giveup and do the stupid thing
unsigned Tmp1 = SelectExpr(CC);
BuildMI(BB, PPC::BNE, 2).addReg(Tmp1).addMBB(Dest);
return;
}
unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
{
unsigned Tmp1, Tmp2, Tmp3;
unsigned Opc = 0;
SDNode *Node = N.Val;
MVT::ValueType DestType = N.getValueType();
unsigned opcode = N.getOpcode();
switch (opcode) {
default:
Node->dump();
assert(0 && "Node not handled!\n");
case ISD::SELECT:
abort();
case ISD::FP_ROUND:
assert (DestType == MVT::f32 &&
N.getOperand(0).getValueType() == MVT::f64 &&
"only f64 to f32 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1);
return Result;
case ISD::FP_EXTEND:
assert (DestType == MVT::f64 &&
N.getOperand(0).getValueType() == MVT::f32 &&
"only f32 to f64 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
return Result;
case ISD::CopyFromReg:
// FIXME: Handle copy from physregs!
// Just use the specified register as our input.
return dyn_cast<RegSDNode>(Node)->getReg();
case ISD::LOAD:
abort();
case ISD::ConstantFP:
abort();
case ISD::MUL:
case ISD::ADD:
case ISD::SUB:
case ISD::SDIV:
switch( opcode ) {
case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break;
case ISD::ADD: Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS; break;
case ISD::SUB: Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS; break;
case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break;
};
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::EXTLOAD:
abort();
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP:
abort();
}
assert(0 && "should not get here");
return 0;
}
unsigned ISel::SelectExpr(SDOperand N) {
unsigned Result;
unsigned Tmp1, Tmp2, Tmp3;
unsigned Opc = 0;
unsigned opcode = N.getOpcode();
SDNode *Node = N.Val;
MVT::ValueType DestType = N.getValueType();
unsigned &Reg = ExprMap[N];
if (Reg) return Reg;
if (DestType == MVT::f64 || DestType == MVT::f32)
return SelectExprFP(N, Result);
if (N.getOpcode() != ISD::CALL)
Reg = Result = (N.getValueType() != MVT::Other) ?
MakeReg(N.getValueType()) : 1;
else
abort(); // FIXME: Implement Call
switch (opcode) {
default:
Node->dump();
assert(0 && "Node not handled!\n");
case ISD::DYNAMIC_STACKALLOC:
abort();
case ISD::ConstantPool:
abort();
case ISD::FrameIndex:
abort();
case ISD::EXTLOAD:
case ISD::ZEXTLOAD:
case ISD::SEXTLOAD:
case ISD::LOAD:
case ISD::GlobalAddress:
case ISD::CALL:
abort();
case ISD::SIGN_EXTEND:
case ISD::SIGN_EXTEND_INREG:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1);
return Result;
case ISD::ZERO_EXTEND_INREG:
Tmp1 = SelectExpr(N.getOperand(0));
switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
default:
Node->dump();
assert(0 && "Zero Extend InReg not there yet");
break;
case MVT::i16: Tmp2 = 16; break;
case MVT::i8: Tmp2 = 24; break;
case MVT::i1: Tmp2 = 31; break;
}
BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(0).addImm(0)
.addImm(Tmp2).addImm(31);
return Result;
case ISD::SETCC:
abort();
case ISD::CopyFromReg:
if (Result == 1)
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1);
return Result;
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::MUL:
abort();
case ISD::ADD:
assert (DestType == MVT::i32 && "Only do arithmetic on i32s!");
Tmp1 = SelectExpr(N.getOperand(0));
switch(canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
default: assert(0 && "unhandled result code");
case 0: // No immediate
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
case 1: // Low immediate
BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
break;
case 2: // Shifted immediate
BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2);
break;
}
return Result;
case ISD::SUB:
abort();
case ISD::AND:
case ISD::OR:
case ISD::XOR:
assert (DestType == MVT::i32 && "Only do arithmetic on i32s!");
Tmp1 = SelectExpr(N.getOperand(0));
switch(canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
default: assert(0 && "unhandled result code");
case 0: // No immediate
Tmp2 = SelectExpr(N.getOperand(1));
switch (opcode) {
case ISD::AND: Tmp3 = PPC::AND; break;
case ISD::OR: Tmp3 = PPC::OR; break;
case ISD::XOR: Tmp3 = PPC::XOR; break;
}
BuildMI(BB, Tmp3, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
case 1: // Low immediate
switch (opcode) {
case ISD::AND: Tmp3 = PPC::ANDIo; break;
case ISD::OR: Tmp3 = PPC::ORI; break;
case ISD::XOR: Tmp3 = PPC::XORI; break;
}
BuildMI(BB, Tmp3, 2, Result).addReg(Tmp1).addImm(Tmp2);
break;
case 2: // Shifted immediate
switch (opcode) {
case ISD::AND: Tmp3 = PPC::ANDISo; break;
case ISD::OR: Tmp3 = PPC::ORIS; break;
case ISD::XOR: Tmp3 = PPC::XORIS; break;
}
BuildMI(BB, Tmp3, 2, Result).addReg(Tmp1).addImm(Tmp2);
break;
}
return Result;
case ISD::UREM:
case ISD::SREM:
case ISD::SDIV:
case ISD::UDIV:
abort();
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT:
abort();
case ISD::SELECT:
abort();
case ISD::Constant:
switch (N.getValueType()) {
default: assert(0 && "Cannot use constants of this type!");
case MVT::i1:
BuildMI(BB, PPC::LI, 1, Result)
.addSImm(!cast<ConstantSDNode>(N)->isNullValue());
break;
case MVT::i32:
{
int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
if (v < 32768 && v >= -32768) {
BuildMI(BB, PPC::LI, 1, Result).addSImm(v);
} else {
unsigned Temp = MakeReg(MVT::i32);
BuildMI(BB, PPC::LIS, 1, Temp).addSImm(v >> 16);
BuildMI(BB, PPC::ORI, 2, Result).addReg(Temp).addImm(v & 0xFFFF);
}
}
}
return Result;
}
return 0;
}
void ISel::Select(SDOperand N) {
unsigned Tmp1, Tmp2, Opc;
unsigned opcode = N.getOpcode();
if (!ExprMap.insert(std::make_pair(N, 1)).second)
return; // Already selected.
SDNode *Node = N.Val;
switch (Node->getOpcode()) {
default:
Node->dump(); std::cerr << "\n";
assert(0 && "Node not handled yet!");
case ISD::EntryToken: return; // Noop
case ISD::TokenFactor:
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Select(Node->getOperand(i));
return;
case ISD::ADJCALLSTACKDOWN:
case ISD::ADJCALLSTACKUP:
Select(N.getOperand(0));
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? PPC::ADJCALLSTACKDOWN :
PPC::ADJCALLSTACKUP;
BuildMI(BB, Opc, 1).addImm(Tmp1);
return;
case ISD::BR: {
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
Select(N.getOperand(0));
BuildMI(BB, PPC::B, 1).addMBB(Dest);
return;
}
case ISD::BRCOND:
SelectBranchCC(N);
return;
case ISD::CopyToReg:
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = cast<RegSDNode>(N)->getReg();
if (Tmp1 != Tmp2) {
if (N.getOperand(1).getValueType() == MVT::f64 ||
N.getOperand(1).getValueType() == MVT::f32)
BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1);
else
BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
}
return;
case ISD::ImplicitDef:
Select(N.getOperand(0));
BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast<RegSDNode>(N)->getReg());
return;
case ISD::RET:
switch (N.getNumOperands()) {
default:
assert(0 && "Unknown return instruction!");
case 3:
assert(N.getOperand(1).getValueType() == MVT::i32 &&
N.getOperand(2).getValueType() == MVT::i32 &&
"Unknown two-register value!");
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = SelectExpr(N.getOperand(2));
BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp2).addReg(Tmp2);
break;
case 2:
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
switch (N.getOperand(1).getValueType()) {
default:
assert(0 && "Unknown return type!");
case MVT::f64:
case MVT::f32:
BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1);
break;
case MVT::i32:
BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
break;
}
}
BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction
return;
case ISD::TRUNCSTORE:
case ISD::STORE:
{
SDOperand Chain = N.getOperand(0);
SDOperand Value = N.getOperand(1);
SDOperand Address = N.getOperand(2);
Select(Chain);
Tmp1 = SelectExpr(Value); //value
if (opcode == ISD::STORE) {
switch(Value.getValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i32: Opc = PPC::STW; break;
case MVT::f64: Opc = PPC::STFD; break;
case MVT::f32: Opc = PPC::STFS; break;
}
} else { //ISD::TRUNCSTORE
switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i1: //FIXME: DAG does not promote this load
case MVT::i8: Opc = PPC::STB; break;
case MVT::i16: Opc = PPC::STH; break;
}
}
if (Address.getOpcode() == ISD::GlobalAddress)
{
BuildMI(BB, Opc, 2).addReg(Tmp1)
.addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal());
}
else if(Address.getOpcode() == ISD::FrameIndex)
{
BuildMI(BB, Opc, 2).addReg(Tmp1)
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex());
}
else
{
int offset;
SelectAddr(Address, Tmp2, offset);
BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2);
}
return;
}
case ISD::EXTLOAD:
case ISD::SEXTLOAD:
case ISD::ZEXTLOAD:
case ISD::LOAD:
case ISD::CopyFromReg:
case ISD::CALL:
case ISD::DYNAMIC_STACKALLOC:
ExprMap.erase(N);
SelectExpr(N);
return;
}
assert(0 && "Should not be reached!");
}
/// createPPC32PatternInstructionSelector - This pass converts an LLVM function
/// into a machine code representation using pattern matching and a machine
/// description file.
///
FunctionPass *llvm::createPPC32ISelPattern(TargetMachine &TM) {
return new ISel(TM);
}

View File

@ -37,6 +37,8 @@ namespace llvm {
cl::opt<bool> EnablePPCLSR("enable-lsr-for-ppc",
cl::desc("Enable LSR for PPC (beta option!)"),
cl::Hidden);
cl::opt<bool> EnablePatternISel("pattern-isel", cl::Hidden,
cl::desc("Enable the pattern isel XXX FIXME"));
}
namespace {
@ -96,6 +98,8 @@ bool PowerPCTargetMachine::addPassesToEmitAssembly(PassManager &PM,
if (LP64)
PM.add(createPPC64ISelSimple(*this));
else if (EnablePatternISel)
PM.add(createPPC32ISelPattern(*this));
else
PM.add(createPPC32ISelSimple(*this));