Significantly reduce the compiled size of Functions.cpp by turning a big blob of tblgen

generated code (for Intrinsic::getType) into a table.  This handles common cases right now,
but I plan to extend it to handle all cases and merge in type verification logic as well
in follow-on patches.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156905 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2012-05-16 06:34:44 +00:00
parent 7200c5cd30
commit a98aa6ad1e
2 changed files with 351 additions and 123 deletions

View File

@ -29,7 +29,6 @@
#include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringExtras.h"
using namespace llvm; using namespace llvm;
// Explicit instantiations of SymbolTableListTraits since some of the methods // Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file... // are not in the public header file...
template class llvm::SymbolTableListTraits<Argument, Function>; template class llvm::SymbolTableListTraits<Argument, Function>;
@ -358,17 +357,57 @@ std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
return Result; return Result;
} }
#define GET_INTRINSTIC_GENERATOR_GLOBAL
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSTIC_GENERATOR_GLOBAL
static Type *DecodeFixedType(unsigned &TableVal, LLVMContext &Context) {
unsigned Nibble = TableVal & 0xF;
TableVal >>= 4;
switch ((IIT_Info)Nibble) {
case IIT_Done: return Type::getVoidTy(Context);
case IIT_I1: return Type::getInt1Ty(Context);
case IIT_I8: return Type::getInt8Ty(Context);
case IIT_I16: return Type::getInt16Ty(Context);
case IIT_I32: return Type::getInt32Ty(Context);
case IIT_I64: return Type::getInt64Ty(Context);
case IIT_F32: return Type::getFloatTy(Context);
case IIT_F64: return Type::getDoubleTy(Context);
case IIT_V2: return VectorType::get(DecodeFixedType(TableVal, Context), 2);
case IIT_V4: return VectorType::get(DecodeFixedType(TableVal, Context), 4);
case IIT_V8: return VectorType::get(DecodeFixedType(TableVal, Context), 8);
case IIT_V16: return VectorType::get(DecodeFixedType(TableVal, Context), 16);
case IIT_MMX: return Type::getX86_MMXTy(Context);
case IIT_PTR: return PointerType::get(DecodeFixedType(TableVal, Context),0);
case IIT_ARG: assert(0 && "Unimp!");
}
llvm_unreachable("unhandled");
}
FunctionType *Intrinsic::getType(LLVMContext &Context, FunctionType *Intrinsic::getType(LLVMContext &Context,
ID id, ArrayRef<Type*> Tys) { ID id, ArrayRef<Type*> Tys) {
Type *ResultTy = NULL; Type *ResultTy = 0;
SmallVector<Type*, 8> ArgTys; SmallVector<Type*, 8> ArgTys;
bool IsVarArg = false;
// Check to see if the intrinsic's type was expressible by the table.
unsigned TableVal = IIT_Table[id-1];
if (TableVal != ~0U) {
ResultTy = DecodeFixedType(TableVal, Context);
while (TableVal)
ArgTys.push_back(DecodeFixedType(TableVal, Context));
return FunctionType::get(ResultTy, ArgTys, false);
}
#define GET_INTRINSIC_GENERATOR #define GET_INTRINSIC_GENERATOR
#include "llvm/Intrinsics.gen" #include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_GENERATOR #undef GET_INTRINSIC_GENERATOR
return FunctionType::get(ResultTy, ArgTys, IsVarArg); return FunctionType::get(ResultTy, ArgTys, false);
} }
bool Intrinsic::isOverloaded(ID id) { bool Intrinsic::isOverloaded(ID id) {
@ -440,4 +479,3 @@ bool Function::callsFunctionThatReturnsTwice() const {
return false; return false;
} }
// vim: sw=2 ai

View File

@ -174,109 +174,6 @@ EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints,
OS << "#endif\n\n"; OS << "#endif\n\n";
} }
static void EmitTypeForValueType(raw_ostream &OS, MVT::SimpleValueType VT) {
if (EVT(VT).isInteger()) {
unsigned BitWidth = EVT(VT).getSizeInBits();
OS << "IntegerType::get(Context, " << BitWidth << ")";
} else if (VT == MVT::Other) {
// MVT::OtherVT is used to mean the empty struct type here.
OS << "StructType::get(Context)";
} else if (VT == MVT::f16) {
OS << "Type::getHalfTy(Context)";
} else if (VT == MVT::f32) {
OS << "Type::getFloatTy(Context)";
} else if (VT == MVT::f64) {
OS << "Type::getDoubleTy(Context)";
} else if (VT == MVT::f80) {
OS << "Type::getX86_FP80Ty(Context)";
} else if (VT == MVT::f128) {
OS << "Type::getFP128Ty(Context)";
} else if (VT == MVT::ppcf128) {
OS << "Type::getPPC_FP128Ty(Context)";
} else if (VT == MVT::isVoid) {
OS << "Type::getVoidTy(Context)";
} else if (VT == MVT::Metadata) {
OS << "Type::getMetadataTy(Context)";
} else if (VT == MVT::x86mmx) {
OS << "Type::getX86_MMXTy(Context)";
} else {
assert(false && "Unsupported ValueType!");
}
}
static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType,
unsigned &ArgNo);
static void EmitTypeGenerate(raw_ostream &OS,
const std::vector<Record*> &ArgTypes,
unsigned &ArgNo) {
if (ArgTypes.empty())
return EmitTypeForValueType(OS, MVT::isVoid);
if (ArgTypes.size() == 1)
return EmitTypeGenerate(OS, ArgTypes.front(), ArgNo);
OS << "StructType::get(";
for (std::vector<Record*>::const_iterator
I = ArgTypes.begin(), E = ArgTypes.end(); I != E; ++I) {
EmitTypeGenerate(OS, *I, ArgNo);
OS << ", ";
}
OS << " NULL)";
}
static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType,
unsigned &ArgNo) {
MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT"));
if (ArgType->isSubClassOf("LLVMMatchType")) {
unsigned Number = ArgType->getValueAsInt("Number");
assert(Number < ArgNo && "Invalid matching number!");
if (ArgType->isSubClassOf("LLVMExtendedElementVectorType"))
OS << "VectorType::getExtendedElementVectorType"
<< "(cast<VectorType>(Tys[" << Number << "]))";
else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType"))
OS << "VectorType::getTruncatedElementVectorType"
<< "(cast<VectorType>(Tys[" << Number << "]))";
else
OS << "Tys[" << Number << "]";
} else if (VT == MVT::iAny || VT == MVT::fAny || VT == MVT::vAny) {
// NOTE: The ArgNo variable here is not the absolute argument number, it is
// the index of the "arbitrary" type in the Tys array passed to the
// Intrinsic::getDeclaration function. Consequently, we only want to
// increment it when we actually hit an overloaded type. Getting this wrong
// leads to very subtle bugs!
OS << "Tys[" << ArgNo++ << "]";
} else if (EVT(VT).isVector()) {
EVT VVT = VT;
OS << "VectorType::get(";
EmitTypeForValueType(OS, VVT.getVectorElementType().getSimpleVT().SimpleTy);
OS << ", " << VVT.getVectorNumElements() << ")";
} else if (VT == MVT::iPTR) {
OS << "PointerType::getUnqual(";
EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
OS << ")";
} else if (VT == MVT::iPTRAny) {
// Make sure the user has passed us an argument type to overload. If not,
// treat it as an ordinary (not overloaded) intrinsic.
OS << "(" << ArgNo << " < Tys.size()) ? Tys[" << ArgNo
<< "] : PointerType::getUnqual(";
EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
OS << ")";
++ArgNo;
} else if (VT == MVT::isVoid) {
if (ArgNo == 0)
OS << "Type::getVoidTy(Context)";
else
// MVT::isVoid is used to mean varargs here.
OS << "...";
} else {
EmitTypeForValueType(OS, VT);
}
}
/// RecordListComparator - Provide a deterministic comparator for lists of /// RecordListComparator - Provide a deterministic comparator for lists of
/// records. /// records.
namespace { namespace {
@ -411,22 +308,322 @@ void IntrinsicEmitter::EmitVerifier(const std::vector<CodeGenIntrinsic> &Ints,
OS << "#endif\n\n"; OS << "#endif\n\n";
} }
static void EmitTypeForValueType(raw_ostream &OS, MVT::SimpleValueType VT) {
if (EVT(VT).isInteger()) {
unsigned BitWidth = EVT(VT).getSizeInBits();
OS << "IntegerType::get(Context, " << BitWidth << ")";
} else if (VT == MVT::Other) {
// MVT::OtherVT is used to mean the empty struct type here.
OS << "StructType::get(Context)";
} else if (VT == MVT::f16) {
OS << "Type::getHalfTy(Context)";
} else if (VT == MVT::f32) {
OS << "Type::getFloatTy(Context)";
} else if (VT == MVT::f64) {
OS << "Type::getDoubleTy(Context)";
} else if (VT == MVT::f80) {
OS << "Type::getX86_FP80Ty(Context)";
} else if (VT == MVT::f128) {
OS << "Type::getFP128Ty(Context)";
} else if (VT == MVT::ppcf128) {
OS << "Type::getPPC_FP128Ty(Context)";
} else if (VT == MVT::isVoid) {
OS << "Type::getVoidTy(Context)";
} else if (VT == MVT::Metadata) {
OS << "Type::getMetadataTy(Context)";
} else if (VT == MVT::x86mmx) {
OS << "Type::getX86_MMXTy(Context)";
} else {
assert(false && "Unsupported ValueType!");
}
}
static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType,
unsigned &ArgNo);
static void EmitTypeGenerate(raw_ostream &OS,
const std::vector<Record*> &ArgTypes,
unsigned &ArgNo) {
if (ArgTypes.empty())
return EmitTypeForValueType(OS, MVT::isVoid);
if (ArgTypes.size() == 1)
return EmitTypeGenerate(OS, ArgTypes.front(), ArgNo);
OS << "StructType::get(";
for (std::vector<Record*>::const_iterator
I = ArgTypes.begin(), E = ArgTypes.end(); I != E; ++I) {
EmitTypeGenerate(OS, *I, ArgNo);
OS << ", ";
}
OS << " NULL)";
}
static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType,
unsigned &ArgNo) {
MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT"));
if (ArgType->isSubClassOf("LLVMMatchType")) {
unsigned Number = ArgType->getValueAsInt("Number");
assert(Number < ArgNo && "Invalid matching number!");
if (ArgType->isSubClassOf("LLVMExtendedElementVectorType"))
OS << "VectorType::getExtendedElementVectorType"
<< "(cast<VectorType>(Tys[" << Number << "]))";
else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType"))
OS << "VectorType::getTruncatedElementVectorType"
<< "(cast<VectorType>(Tys[" << Number << "]))";
else
OS << "Tys[" << Number << "]";
} else if (VT == MVT::iAny || VT == MVT::fAny || VT == MVT::vAny) {
// NOTE: The ArgNo variable here is not the absolute argument number, it is
// the index of the "arbitrary" type in the Tys array passed to the
// Intrinsic::getDeclaration function. Consequently, we only want to
// increment it when we actually hit an overloaded type. Getting this wrong
// leads to very subtle bugs!
OS << "Tys[" << ArgNo++ << "]";
} else if (EVT(VT).isVector()) {
EVT VVT = VT;
OS << "VectorType::get(";
EmitTypeForValueType(OS, VVT.getVectorElementType().getSimpleVT().SimpleTy);
OS << ", " << VVT.getVectorNumElements() << ")";
} else if (VT == MVT::iPTR) {
OS << "PointerType::getUnqual(";
EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
OS << ")";
} else if (VT == MVT::iPTRAny) {
// Make sure the user has passed us an argument type to overload. If not,
// treat it as an ordinary (not overloaded) intrinsic.
OS << "(" << ArgNo << " < Tys.size()) ? Tys[" << ArgNo
<< "] : PointerType::getUnqual(";
EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
OS << ")";
++ArgNo;
} else if (VT == MVT::isVoid) {
assert(ArgNo == 0);
OS << "Type::getVoidTy(Context)";
} else {
EmitTypeForValueType(OS, VT);
}
}
// NOTE: This must be kept in synch with the version emitted to the .gen file!
enum IIT_Info {
IIT_Done = 0,
IIT_I1 = 1,
IIT_I8 = 2,
IIT_I16 = 3,
IIT_I32 = 4,
IIT_I64 = 5,
IIT_F32 = 6,
IIT_F64 = 7,
IIT_V2 = 8,
IIT_V4 = 9,
IIT_V8 = 10,
IIT_V16 = 11,
IIT_MMX = 12,
IIT_PTR = 13,
IIT_ARG = 14
};
static void EncodeFixedValueType(MVT::SimpleValueType VT,
SmallVectorImpl<unsigned> &Sig) {
if (EVT(VT).isInteger()) {
unsigned BitWidth = EVT(VT).getSizeInBits();
switch (BitWidth) {
default: return Sig.push_back(~0U);
case 1: return Sig.push_back(IIT_I1);
case 8: return Sig.push_back(IIT_I8);
case 16: return Sig.push_back(IIT_I16);
case 32: return Sig.push_back(IIT_I32);
case 64: return Sig.push_back(IIT_I64);
}
}
/* } else if (VT == MVT::Other) {
// MVT::OtherVT is used to mean the empty struct type here.
OS << "StructType::get(Context)";
} else if (VT == MVT::f16) {
OS << "Type::getHalfTy(Context)";*/
if (VT == MVT::f32)
return Sig.push_back(IIT_F32);
if (VT == MVT::f64)
return Sig.push_back(IIT_F64);
//if (VT == MVT::f80) {
// OS << "Type::getX86_FP80Ty(Context)";
//if (VT == MVT::f128) {
// OS << "Type::getFP128Ty(Context)";
// if (VT == MVT::ppcf128) {
// OS << "Type::getPPC_FP128Ty(Context)";
//if (VT == MVT::Metadata) {
// OS << "Type::getMetadataTy(Context)";
if (VT == MVT::x86mmx)
return Sig.push_back(IIT_MMX);
assert(VT != MVT::isVoid);
Sig.push_back(~0U);
}
static void EncodeFixedType(Record *R, SmallVectorImpl<unsigned> &Sig) {
if (R->isSubClassOf("LLVMMatchType")) {
return Sig.push_back(~0U);
/*
unsigned Number = ArgType->getValueAsInt("Number");
assert(Number < ArgNo && "Invalid matching number!");
if (ArgType->isSubClassOf("LLVMExtendedElementVectorType"))
OS << "VectorType::getExtendedElementVectorType"
<< "(cast<VectorType>(Tys[" << Number << "]))";
else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType"))
OS << "VectorType::getTruncatedElementVectorType"
<< "(cast<VectorType>(Tys[" << Number << "]))";
else
OS << "Tys[" << Number << "]";
*/
}
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
if (VT == MVT::iAny || VT == MVT::fAny || VT == MVT::vAny) {
return Sig.push_back(~0U);
/*
// NOTE: The ArgNo variable here is not the absolute argument number, it is
// the index of the "arbitrary" type in the Tys array passed to the
// Intrinsic::getDeclaration function. Consequently, we only want to
// increment it when we actually hit an overloaded type. Getting this wrong
// leads to very subtle bugs!
OS << "Tys[" << ArgNo++ << "]";
*/
}
if (EVT(VT).isVector()) {
EVT VVT = VT;
switch (VVT.getVectorNumElements()) {
default: Sig.push_back(~0U); return;
case 2: Sig.push_back(IIT_V2); break;
case 4: Sig.push_back(IIT_V4); break;
case 8: Sig.push_back(IIT_V8); break;
case 16: Sig.push_back(IIT_V16); break;
}
return EncodeFixedValueType(VVT.getVectorElementType().
getSimpleVT().SimpleTy, Sig);
}
if (VT == MVT::iPTR) {
Sig.push_back(IIT_PTR);
return EncodeFixedType(R->getValueAsDef("ElTy"), Sig);
}
/*if (VT == MVT::iPTRAny) {
// Make sure the user has passed us an argument type to overload. If not,
// treat it as an ordinary (not overloaded) intrinsic.
OS << "(" << ArgNo << " < Tys.size()) ? Tys[" << ArgNo
<< "] : PointerType::getUnqual(";
EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
OS << ")";
++ArgNo;
}*/
assert(VT != MVT::isVoid);
EncodeFixedValueType(VT, Sig);
}
/// ComputeFixedEncoding - If we can encode the type signature for this
/// intrinsic into 32 bits, return it. If not, return ~0U.
static unsigned ComputeFixedEncoding(const CodeGenIntrinsic &Int) {
if (Int.IS.RetVTs.size() >= 2) return ~0U;
SmallVector<unsigned, 8> TypeSig;
if (Int.IS.RetVTs.empty())
TypeSig.push_back(IIT_Done);
else if (Int.IS.RetVTs.size() == 1 &&
Int.IS.RetVTs[0] == MVT::isVoid)
TypeSig.push_back(IIT_Done);
else
EncodeFixedType(Int.IS.RetTypeDefs[0], TypeSig);
for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
EncodeFixedType(Int.IS.ParamTypeDefs[i], TypeSig);
// Can only encode 8 nibbles into a 32-bit word.
if (TypeSig.size() > 8) return ~0U;
unsigned Result = 0;
for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
// If we had an unencodable argument, bail out.
if (TypeSig[i] == ~0U)
return ~0U;
Result = (Result << 4) | TypeSig[e-i-1];
}
return Result;
}
void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
raw_ostream &OS) { raw_ostream &OS) {
OS << "// Code for generating Intrinsic function declarations.\n"; OS << "// Global intrinsic function declaration type table.\n";
OS << "#ifdef GET_INTRINSIC_GENERATOR\n"; OS << "#ifdef GET_INTRINSTIC_GENERATOR_GLOBAL\n";
OS << " switch (id) {\n"; // NOTE: These enums must be kept in sync with the ones above!
OS << " default: llvm_unreachable(\"Invalid intrinsic!\");\n"; OS << "enum IIT_Info {\n";
OS << " IIT_Done = 0,\n";
OS << " IIT_I1 = 1,\n";
OS << " IIT_I8 = 2,\n";
OS << " IIT_I16 = 3,\n";
OS << " IIT_I32 = 4,\n";
OS << " IIT_I64 = 5,\n";
OS << " IIT_F32 = 6,\n";
OS << " IIT_F64 = 7,\n";
OS << " IIT_V2 = 8,\n";
OS << " IIT_V4 = 9,\n";
OS << " IIT_V8 = 10,\n";
OS << " IIT_V16 = 11,\n";
OS << " IIT_MMX = 12,\n";
OS << " IIT_PTR = 13,\n";
OS << " IIT_ARG = 14\n";
// 15 is unassigned so far.
OS << "};\n\n";
// Similar to GET_INTRINSIC_VERIFIER, batch up cases that have identical // Similar to GET_INTRINSIC_VERIFIER, batch up cases that have identical
// types. // types.
typedef std::map<RecPair, std::vector<unsigned>, RecordListComparator> MapTy; typedef std::map<RecPair, std::vector<unsigned>, RecordListComparator> MapTy;
MapTy UniqueArgInfos; MapTy UniqueArgInfos;
// If we can compute a 32-bit fixed encoding for this intrinsic, do so and
// capture it in this vector, otherwise store a ~0U.
std::vector<unsigned> FixedEncodings;
// Compute the unique argument type info. // Compute the unique argument type info.
for (unsigned i = 0, e = Ints.size(); i != e; ++i) for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs, FixedEncodings.push_back(ComputeFixedEncoding(Ints[i]));
Ints[i].IS.ParamTypeDefs)].push_back(i);
// If we didn't compute a compact encoding, emit a long-form variant.
if (FixedEncodings.back() == ~0U)
UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs,
Ints[i].IS.ParamTypeDefs)].push_back(i);
}
OS << "static const unsigned IIT_Table[] = {\n ";
for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
if ((i & 7) == 7)
OS << "\n ";
if (FixedEncodings[i] == ~0U)
OS << "~0U, ";
else
OS << "0x" << utohexstr(FixedEncodings[i]) << ", ";
}
OS << "0\n};\n\n#endif\n\n"; // End of GET_INTRINSTIC_GENERATOR_GLOBAL
OS << "// Code for generating Intrinsic function declarations.\n";
OS << "#ifdef GET_INTRINSIC_GENERATOR\n";
OS << " switch (id) {\n";
OS << " default: llvm_unreachable(\"Invalid intrinsic!\");\n";
// Loop through the array, emitting one generator for each batch. // Loop through the array, emitting one generator for each batch.
std::string IntrinsicStr = TargetPrefix + "Intrinsic::"; std::string IntrinsicStr = TargetPrefix + "Intrinsic::";
@ -442,13 +639,6 @@ void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
const std::vector<Record*> &ParamTys = ArgTypes.second; const std::vector<Record*> &ParamTys = ArgTypes.second;
unsigned N = ParamTys.size(); unsigned N = ParamTys.size();
if (N > 1 &&
getValueType(ParamTys[N - 1]->getValueAsDef("VT")) == MVT::isVoid) {
OS << " IsVarArg = true;\n";
--N;
}
unsigned ArgNo = 0; unsigned ArgNo = 0;
OS << " ResultTy = "; OS << " ResultTy = ";
EmitTypeGenerate(OS, RetTys, ArgNo); EmitTypeGenerate(OS, RetTys, ArgNo);