mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 05:31:06 +00:00
Instead of implementing LowerCallTo directly, let the default impl produce an
ISD::CALL node, then custom lower that. This means that we only have to handle LEGAL call operands/results, not every possible type. This allows us to simplify the call code, shrinking it by about 1/3. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28339 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f4ec817299
commit
abde460d4f
@ -877,6 +877,152 @@ static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
|
||||
return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues);
|
||||
}
|
||||
|
||||
static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
|
||||
SDOperand Chain = Op.getOperand(0);
|
||||
unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
|
||||
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
|
||||
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
|
||||
SDOperand Callee = Op.getOperand(4);
|
||||
|
||||
// args_to_use will accumulate outgoing args for the PPCISD::CALL case in
|
||||
// SelectExpr to use to put the arguments in the appropriate registers.
|
||||
std::vector<SDOperand> args_to_use;
|
||||
|
||||
// Count how many bytes are to be pushed on the stack, including the linkage
|
||||
// area, and parameter passing area.
|
||||
unsigned NumBytes = 24;
|
||||
|
||||
if (Op.getNumOperands() == 5) {
|
||||
Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, MVT::i32));
|
||||
} else {
|
||||
for (unsigned i = 5, e = Op.getNumOperands(); i != e; ++i)
|
||||
NumBytes += MVT::getSizeInBits(Op.getOperand(i).getValueType())/8;
|
||||
|
||||
// Just to be safe, we'll always reserve the full 24 bytes of linkage area
|
||||
// plus 32 bytes of argument space in case any called code gets funky on us.
|
||||
// (Required by ABI to support var arg)
|
||||
if (NumBytes < 56) NumBytes = 56;
|
||||
|
||||
// Adjust the stack pointer for the new arguments...
|
||||
// These operations are automatically eliminated by the prolog/epilog pass
|
||||
Chain = DAG.getCALLSEQ_START(Chain,
|
||||
DAG.getConstant(NumBytes, MVT::i32));
|
||||
|
||||
// Set up a copy of the stack pointer for use loading and storing any
|
||||
// arguments that may not fit in the registers available for argument
|
||||
// passing.
|
||||
SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
||||
|
||||
// Figure out which arguments are going to go in registers, and which in
|
||||
// memory. Also, if this is a vararg function, floating point operations
|
||||
// must be stored to our stack, and loaded into integer regs as well, if
|
||||
// any integer regs are available for argument passing.
|
||||
unsigned ArgOffset = 24;
|
||||
unsigned GPR_remaining = 8;
|
||||
unsigned FPR_remaining = 13;
|
||||
|
||||
std::vector<SDOperand> MemOps;
|
||||
for (unsigned i = 5, e = Op.getNumOperands(); i != e; ++i) {
|
||||
SDOperand Arg = Op.getOperand(i);
|
||||
|
||||
// PtrOff will be used to store the current argument to the stack if a
|
||||
// register cannot be found for it.
|
||||
SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
||||
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
||||
switch (Arg.getValueType()) {
|
||||
default: assert(0 && "Unexpected ValueType for argument!");
|
||||
case MVT::i32:
|
||||
if (GPR_remaining > 0) {
|
||||
args_to_use.push_back(Arg);
|
||||
--GPR_remaining;
|
||||
} else {
|
||||
MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
||||
Arg, PtrOff, DAG.getSrcValue(NULL)));
|
||||
}
|
||||
ArgOffset += 4;
|
||||
break;
|
||||
case MVT::f32:
|
||||
case MVT::f64:
|
||||
if (FPR_remaining > 0) {
|
||||
args_to_use.push_back(Arg);
|
||||
--FPR_remaining;
|
||||
if (isVarArg) {
|
||||
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
||||
Arg, PtrOff,
|
||||
DAG.getSrcValue(NULL));
|
||||
MemOps.push_back(Store);
|
||||
// Float varargs are always shadowed in available integer registers
|
||||
if (GPR_remaining > 0) {
|
||||
SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
|
||||
DAG.getSrcValue(NULL));
|
||||
MemOps.push_back(Load.getValue(1));
|
||||
args_to_use.push_back(Load);
|
||||
--GPR_remaining;
|
||||
}
|
||||
if (GPR_remaining > 0 && Arg.getValueType() == MVT::f64) {
|
||||
SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
|
||||
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
|
||||
SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
|
||||
DAG.getSrcValue(NULL));
|
||||
MemOps.push_back(Load.getValue(1));
|
||||
args_to_use.push_back(Load);
|
||||
--GPR_remaining;
|
||||
}
|
||||
} else {
|
||||
// If we have any FPRs remaining, we may also have GPRs remaining.
|
||||
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
|
||||
// GPRs.
|
||||
if (GPR_remaining > 0) {
|
||||
args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
|
||||
--GPR_remaining;
|
||||
}
|
||||
if (GPR_remaining > 0 && Arg.getValueType() == MVT::f64) {
|
||||
args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
|
||||
--GPR_remaining;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
||||
Arg, PtrOff, DAG.getSrcValue(NULL)));
|
||||
}
|
||||
ArgOffset += (Arg.getValueType() == MVT::f32) ? 4 : 8;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!MemOps.empty())
|
||||
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
|
||||
}
|
||||
|
||||
std::vector<MVT::ValueType> RetVals(Op.Val->value_begin(),
|
||||
Op.Val->value_end());
|
||||
|
||||
// If the callee is a GlobalAddress node (quite common, every direct call is)
|
||||
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
|
||||
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
||||
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
|
||||
|
||||
std::vector<SDOperand> Ops;
|
||||
Ops.push_back(Chain);
|
||||
Ops.push_back(Callee);
|
||||
Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
|
||||
SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
|
||||
|
||||
Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
|
||||
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
|
||||
DAG.getConstant(NumBytes, MVT::i32));
|
||||
|
||||
std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
|
||||
Op.Val->value_end());
|
||||
Ops.clear();
|
||||
|
||||
for (unsigned i = 0, e = TheCall.Val->getNumValues()-1; i != e; ++i)
|
||||
Ops.push_back(SDOperand(TheCall.Val, i));
|
||||
Ops.push_back(Chain);
|
||||
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, RetVT, Ops);
|
||||
|
||||
return Res.getValue(Op.ResNo);
|
||||
}
|
||||
|
||||
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
|
||||
SDOperand Copy;
|
||||
switch(Op.getNumOperands()) {
|
||||
@ -1842,6 +1988,7 @@ SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
|
||||
case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
|
||||
case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG,
|
||||
VarArgsFrameIndex);
|
||||
case ISD::CALL: return LowerCALL(Op, DAG);
|
||||
case ISD::RET: return LowerRET(Op, DAG);
|
||||
|
||||
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
||||
@ -1867,217 +2014,6 @@ SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
|
||||
// Other Lowering Code
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
std::pair<SDOperand, SDOperand>
|
||||
PPCTargetLowering::LowerCallTo(SDOperand Chain,
|
||||
const Type *RetTy, bool isVarArg,
|
||||
unsigned CallingConv, bool isTailCall,
|
||||
SDOperand Callee, ArgListTy &Args,
|
||||
SelectionDAG &DAG) {
|
||||
// args_to_use will accumulate outgoing args for the PPCISD::CALL case in
|
||||
// SelectExpr to use to put the arguments in the appropriate registers.
|
||||
std::vector<SDOperand> args_to_use;
|
||||
|
||||
// Count how many bytes are to be pushed on the stack, including the linkage
|
||||
// area, and parameter passing area.
|
||||
unsigned NumBytes = 24;
|
||||
|
||||
if (Args.empty()) {
|
||||
Chain = DAG.getCALLSEQ_START(Chain,
|
||||
DAG.getConstant(NumBytes, getPointerTy()));
|
||||
} else {
|
||||
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
||||
switch (getValueType(Args[i].second)) {
|
||||
default: assert(0 && "Unknown value type!");
|
||||
case MVT::i1:
|
||||
case MVT::i8:
|
||||
case MVT::i16:
|
||||
case MVT::i32:
|
||||
case MVT::f32:
|
||||
NumBytes += 4;
|
||||
break;
|
||||
case MVT::i64:
|
||||
case MVT::f64:
|
||||
NumBytes += 8;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Just to be safe, we'll always reserve the full 24 bytes of linkage area
|
||||
// plus 32 bytes of argument space in case any called code gets funky on us.
|
||||
// (Required by ABI to support var arg)
|
||||
if (NumBytes < 56) NumBytes = 56;
|
||||
|
||||
// Adjust the stack pointer for the new arguments...
|
||||
// These operations are automatically eliminated by the prolog/epilog pass
|
||||
Chain = DAG.getCALLSEQ_START(Chain,
|
||||
DAG.getConstant(NumBytes, getPointerTy()));
|
||||
|
||||
// Set up a copy of the stack pointer for use loading and storing any
|
||||
// arguments that may not fit in the registers available for argument
|
||||
// passing.
|
||||
SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
||||
|
||||
// Figure out which arguments are going to go in registers, and which in
|
||||
// memory. Also, if this is a vararg function, floating point operations
|
||||
// must be stored to our stack, and loaded into integer regs as well, if
|
||||
// any integer regs are available for argument passing.
|
||||
unsigned ArgOffset = 24;
|
||||
unsigned GPR_remaining = 8;
|
||||
unsigned FPR_remaining = 13;
|
||||
|
||||
std::vector<SDOperand> MemOps;
|
||||
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
||||
// PtrOff will be used to store the current argument to the stack if a
|
||||
// register cannot be found for it.
|
||||
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
|
||||
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
||||
MVT::ValueType ArgVT = getValueType(Args[i].second);
|
||||
|
||||
switch (ArgVT) {
|
||||
default: assert(0 && "Unexpected ValueType for argument!");
|
||||
case MVT::i1:
|
||||
case MVT::i8:
|
||||
case MVT::i16:
|
||||
// Promote the integer to 32 bits. If the input type is signed use a
|
||||
// sign extend, otherwise use a zero extend.
|
||||
if (Args[i].second->isSigned())
|
||||
Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
|
||||
else
|
||||
Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
|
||||
// FALL THROUGH
|
||||
case MVT::i32:
|
||||
if (GPR_remaining > 0) {
|
||||
args_to_use.push_back(Args[i].first);
|
||||
--GPR_remaining;
|
||||
} else {
|
||||
MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
||||
Args[i].first, PtrOff,
|
||||
DAG.getSrcValue(NULL)));
|
||||
}
|
||||
ArgOffset += 4;
|
||||
break;
|
||||
case MVT::i64:
|
||||
// If we have one free GPR left, we can place the upper half of the i64
|
||||
// in it, and store the other half to the stack. If we have two or more
|
||||
// free GPRs, then we can pass both halves of the i64 in registers.
|
||||
if (GPR_remaining > 0) {
|
||||
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
|
||||
Args[i].first, DAG.getConstant(1, MVT::i32));
|
||||
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
|
||||
Args[i].first, DAG.getConstant(0, MVT::i32));
|
||||
args_to_use.push_back(Hi);
|
||||
--GPR_remaining;
|
||||
if (GPR_remaining > 0) {
|
||||
args_to_use.push_back(Lo);
|
||||
--GPR_remaining;
|
||||
} else {
|
||||
SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
|
||||
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
|
||||
MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
||||
Lo, PtrOff, DAG.getSrcValue(NULL)));
|
||||
}
|
||||
} else {
|
||||
MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
||||
Args[i].first, PtrOff,
|
||||
DAG.getSrcValue(NULL)));
|
||||
}
|
||||
ArgOffset += 8;
|
||||
break;
|
||||
case MVT::f32:
|
||||
case MVT::f64:
|
||||
if (FPR_remaining > 0) {
|
||||
args_to_use.push_back(Args[i].first);
|
||||
--FPR_remaining;
|
||||
if (isVarArg) {
|
||||
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
||||
Args[i].first, PtrOff,
|
||||
DAG.getSrcValue(NULL));
|
||||
MemOps.push_back(Store);
|
||||
// Float varargs are always shadowed in available integer registers
|
||||
if (GPR_remaining > 0) {
|
||||
SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
|
||||
DAG.getSrcValue(NULL));
|
||||
MemOps.push_back(Load.getValue(1));
|
||||
args_to_use.push_back(Load);
|
||||
--GPR_remaining;
|
||||
}
|
||||
if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
|
||||
SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
|
||||
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
|
||||
SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
|
||||
DAG.getSrcValue(NULL));
|
||||
MemOps.push_back(Load.getValue(1));
|
||||
args_to_use.push_back(Load);
|
||||
--GPR_remaining;
|
||||
}
|
||||
} else {
|
||||
// If we have any FPRs remaining, we may also have GPRs remaining.
|
||||
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
|
||||
// GPRs.
|
||||
if (GPR_remaining > 0) {
|
||||
args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
|
||||
--GPR_remaining;
|
||||
}
|
||||
if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
|
||||
args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
|
||||
--GPR_remaining;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
||||
Args[i].first, PtrOff,
|
||||
DAG.getSrcValue(NULL)));
|
||||
}
|
||||
ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!MemOps.empty())
|
||||
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
|
||||
}
|
||||
|
||||
std::vector<MVT::ValueType> RetVals;
|
||||
MVT::ValueType RetTyVT = getValueType(RetTy);
|
||||
MVT::ValueType ActualRetTyVT = RetTyVT;
|
||||
if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
|
||||
ActualRetTyVT = MVT::i32; // Promote result to i32.
|
||||
|
||||
if (RetTyVT == MVT::i64) {
|
||||
RetVals.push_back(MVT::i32);
|
||||
RetVals.push_back(MVT::i32);
|
||||
} else if (RetTyVT != MVT::isVoid) {
|
||||
RetVals.push_back(ActualRetTyVT);
|
||||
}
|
||||
RetVals.push_back(MVT::Other);
|
||||
|
||||
// If the callee is a GlobalAddress node (quite common, every direct call is)
|
||||
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
|
||||
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
||||
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
|
||||
|
||||
std::vector<SDOperand> Ops;
|
||||
Ops.push_back(Chain);
|
||||
Ops.push_back(Callee);
|
||||
Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
|
||||
SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
|
||||
Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
|
||||
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
|
||||
DAG.getConstant(NumBytes, getPointerTy()));
|
||||
SDOperand RetVal = TheCall;
|
||||
|
||||
// If the result is a small value, add a note so that we keep track of the
|
||||
// information about whether it is sign or zero extended.
|
||||
if (RetTyVT != ActualRetTyVT) {
|
||||
RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
|
||||
MVT::i32, RetVal, DAG.getValueType(RetTyVT));
|
||||
RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
|
||||
} else if (RetTyVT == MVT::i64) {
|
||||
RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
|
||||
}
|
||||
|
||||
return std::make_pair(RetVal, Chain);
|
||||
}
|
||||
|
||||
MachineBasicBlock *
|
||||
PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
|
||||
MachineBasicBlock *BB) {
|
||||
|
@ -166,14 +166,6 @@ namespace llvm {
|
||||
uint64_t &KnownZero,
|
||||
uint64_t &KnownOne,
|
||||
unsigned Depth = 0) const;
|
||||
|
||||
/// LowerCallTo - This hook lowers an abstract call to a function into an
|
||||
/// actual call.
|
||||
virtual std::pair<SDOperand, SDOperand>
|
||||
LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
|
||||
unsigned CC,
|
||||
bool isTailCall, SDOperand Callee, ArgListTy &Args,
|
||||
SelectionDAG &DAG);
|
||||
|
||||
virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
|
||||
MachineBasicBlock *MBB);
|
||||
|
Loading…
Reference in New Issue
Block a user