Doxygenify method comments.

Try to improve method comments a little.
Get rid of some excess whitespace; put braces on previous line when possible.
Add stub for method to verify the work of saveState().


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9385 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Brian Gaeke 2003-10-22 20:22:53 +00:00
parent b7c4c992be
commit af84370908
2 changed files with 306 additions and 412 deletions

View File

@ -73,18 +73,13 @@ void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const {
}
//----------------------------------------------------------------------------
// This method initially creates interference graphs (one in each reg class)
// and IGNodeList (one in each IG). The actual nodes will be pushed later.
//----------------------------------------------------------------------------
/// Initialize interference graphs (one in each reg class) and IGNodeLists
/// (one in each IG). The actual nodes will be pushed later.
///
void PhyRegAlloc::createIGNodeListsAndIGs() {
if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n";
// hash map iterator
LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();
// hash map end
LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();
for (; HMI != HMIEnd ; ++HMI ) {
@ -114,15 +109,12 @@ void PhyRegAlloc::createIGNodeListsAndIGs() {
}
//----------------------------------------------------------------------------
// This method will add all interferences at for a given instruction.
// Interference occurs only if the LR of Def (Inst or Arg) is of the same reg
// class as that of live var. The live var passed to this function is the
// LVset AFTER the instruction
//----------------------------------------------------------------------------
void PhyRegAlloc::addInterference(const Value *Def,
const ValueSet *LVSet,
/// Add all interferences for a given instruction. Interference occurs only
/// if the LR of Def (Inst or Arg) is of the same reg class as that of live
/// var. The live var passed to this function is the LVset AFTER the
/// instruction.
///
void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet,
bool isCallInst) {
ValueSet::const_iterator LIt = LVSet->begin();
@ -153,13 +145,11 @@ void PhyRegAlloc::addInterference(const Value *Def,
}
//----------------------------------------------------------------------------
// For a call instruction, this method sets the CallInterference flag in
// the LR of each variable live int the Live Variable Set live after the
// call instruction (except the return value of the call instruction - since
// the return value does not interfere with that call itself).
//----------------------------------------------------------------------------
/// For a call instruction, this method sets the CallInterference flag in
/// the LR of each variable live in the Live Variable Set live after the
/// call instruction (except the return value of the call instruction - since
/// the return value does not interfere with that call itself).
///
void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst,
const ValueSet *LVSetAft) {
if (DEBUG_RA >= RA_DEBUG_Interference)
@ -211,14 +201,11 @@ void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst,
}
//----------------------------------------------------------------------------
// This method will walk thru code and create interferences in the IG of
// each RegClass. Also, this method calculates the spill cost of each
// Live Range (it is done in this method to save another pass over the code).
//----------------------------------------------------------------------------
void PhyRegAlloc::buildInterferenceGraphs()
{
/// Create interferences in the IG of each RegClass, and calculate the spill
/// cost of each Live Range (it is done in this method to save another pass
/// over the code).
///
void PhyRegAlloc::buildInterferenceGraphs() {
if (DEBUG_RA >= RA_DEBUG_Interference)
std::cerr << "Creating interference graphs ...\n";
@ -261,7 +248,10 @@ void PhyRegAlloc::buildInterferenceGraphs()
if (LR) LR->addSpillCost(BBLoopDepthCost);
}
// if there are multiple defs in this instruction e.g. in SETX
// Mark all operands of pseudo-instructions as interfering with one
// another. This must be done because pseudo-instructions may be
// expanded to multiple instructions by the assembler, so all the
// operands must get distinct registers.
if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode()))
addInterf4PseudoInstr(MInst);
@ -285,13 +275,9 @@ void PhyRegAlloc::buildInterferenceGraphs()
}
//--------------------------------------------------------------------------
// Pseudo-instructions may be expanded to multiple instructions by the
// assembler. Consequently, all the operands must get distinct registers.
// Therefore, we mark all operands of a pseudo-instruction as interfering
// with one another.
//--------------------------------------------------------------------------
/// Mark all operands of the given MachineInstr as interfering with one
/// another.
///
void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
bool setInterf = false;
@ -325,10 +311,8 @@ void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
}
//----------------------------------------------------------------------------
// This method adds interferences for incoming arguments to a function.
//----------------------------------------------------------------------------
/// Add interferences for incoming arguments to a function.
///
void PhyRegAlloc::addInterferencesForArgs() {
// get the InSet of root BB
const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());
@ -343,63 +327,46 @@ void PhyRegAlloc::addInterferencesForArgs() {
}
//----------------------------------------------------------------------------
// This method is called after register allocation is complete to set the
// allocated registers in the machine code. This code will add register numbers
// to MachineOperands that contain a Value. Also it calls target specific
// methods to produce caller saving instructions. At the end, it adds all
// additional instructions produced by the register allocator to the
// instruction stream.
//----------------------------------------------------------------------------
/// The following are utility functions used solely by updateMachineCode and
/// the functions that it calls. They should probably be folded back into
/// updateMachineCode at some point.
///
//-----------------------------
// Utility functions used below
//-----------------------------
inline void
InsertBefore(MachineInstr* newMI,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII)
{
// used by: updateMachineCode (1 time), PrependInstructions (1 time)
inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII) {
MII = MBB.insert(MII, newMI);
++MII;
}
inline void
InsertAfter(MachineInstr* newMI,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII)
{
// used by: AppendInstructions (1 time)
inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII) {
++MII; // insert before the next instruction
MII = MBB.insert(MII, newMI);
}
inline void
DeleteInstruction(MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII)
{
// used by: updateMachineCode (1 time)
inline void DeleteInstruction(MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII) {
MII = MBB.erase(MII);
}
inline void
SubstituteInPlace(MachineInstr* newMI,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII)
{
// used by: updateMachineCode (1 time)
inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII) {
*MII = newMI;
}
inline void
PrependInstructions(std::vector<MachineInstr *> &IBef,
// used by: updateMachineCode (2 times)
inline void PrependInstructions(std::vector<MachineInstr *> &IBef,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII,
const std::string& msg)
{
if (!IBef.empty())
{
const std::string& msg) {
if (!IBef.empty()) {
MachineInstr* OrigMI = *MII;
std::vector<MachineInstr *>::iterator AdIt;
for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt)
{
for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) {
if (DEBUG_RA) {
if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI;
std::cerr << msg << "PREPENDed instr:\n " << **AdIt << "\n";
@ -409,18 +376,15 @@ PrependInstructions(std::vector<MachineInstr *> &IBef,
}
}
inline void
AppendInstructions(std::vector<MachineInstr *> &IAft,
// used by: updateMachineCode (1 time)
inline void AppendInstructions(std::vector<MachineInstr *> &IAft,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII,
const std::string& msg)
{
if (!IAft.empty())
{
const std::string& msg) {
if (!IAft.empty()) {
MachineInstr* OrigMI = *MII;
std::vector<MachineInstr *>::iterator AdIt;
for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt )
{
for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) {
if (DEBUG_RA) {
if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI;
std::cerr << msg << "APPENDed instr:\n " << **AdIt << "\n";
@ -430,6 +394,10 @@ AppendInstructions(std::vector<MachineInstr *> &IAft,
}
}
/// Set the registers for operands in the given MachineInstr, if a register was
/// successfully allocated. Return true if any of its operands has been marked
/// for spill.
///
bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
{
bool instrNeedsSpills = false;
@ -437,12 +405,10 @@ bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
// First, set the registers for operands in the machine instruction
// if a register was successfully allocated. Do this first because we
// will need to know which registers are already used by this instr'n.
for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
{
for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
if (Op.getType() == MachineOperand::MO_VirtualRegister ||
Op.getType() == MachineOperand::MO_CCRegister)
{
Op.getType() == MachineOperand::MO_CCRegister) {
const Value *const Val = Op.getVRegValue();
if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) {
// Remember if any operand needs spilling
@ -460,9 +426,13 @@ bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
return instrNeedsSpills;
}
/// Mark allocated registers (using markAllocatedRegs()) on the instruction
/// that MII points to. Then, if it's a call instruction, insert caller-saving
/// code before and after it. Finally, insert spill code before and after it,
/// using insertCode4SpilledLR().
///
void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
MachineBasicBlock &MBB)
{
MachineBasicBlock &MBB) {
MachineInstr* MInst = *MII;
unsigned Opcode = MInst->getOpCode();
@ -493,12 +463,10 @@ void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
// registers. This must be done even for call return instructions
// since those are not handled by the special code above.
if (instrNeedsSpills)
for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
{
for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
if (Op.getType() == MachineOperand::MO_VirtualRegister ||
Op.getType() == MachineOperand::MO_CCRegister)
{
Op.getType() == MachineOperand::MO_CCRegister) {
const Value* Val = Op.getVRegValue();
if (const LiveRange *LR = LRI->getLiveRangeForValue(Val))
if (LR->isMarkedForSpill())
@ -507,6 +475,10 @@ void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
} // for each operand
}
/// Iterate over all the MachineBasicBlocks in the current function and set
/// the allocated registers for each instruction (using updateInstruction()),
/// after register allocation is complete. Then move code out of delay slots.
///
void PhyRegAlloc::updateMachineCode()
{
// Insert any instructions needed at method entry
@ -519,7 +491,6 @@ void PhyRegAlloc::updateMachineCode()
for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
BBI != BBE; ++BBI) {
MachineBasicBlock &MBB = *BBI;
// Iterate over all machine instructions in BB and mark operands with
@ -546,8 +517,7 @@ void PhyRegAlloc::updateMachineCode()
for (MachineBasicBlock::iterator MII = MBB.begin();
MII != MBB.end(); ++MII)
if (unsigned delaySlots =
TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode()))
{
TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode())) {
MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1);
// Check the 2 conditions above:
@ -562,8 +532,7 @@ void PhyRegAlloc::updateMachineCode()
(AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 ||
AddedInstrMap[DelaySlotMI].InstrnsAfter.size() > 0));
if (cond1 || cond2)
{
if (cond1 || cond2) {
assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 &&
"FIXME: Moving an annulled delay slot instruction!");
assert(delaySlots==1 &&
@ -646,15 +615,13 @@ void PhyRegAlloc::updateMachineCode()
}
//----------------------------------------------------------------------------
// This method inserts spill code for AN operand whose LR was spilled.
// This method may be called several times for a single machine instruction
// if it contains many spilled operands. Each time it is called, it finds
// a register which is not live at that instruction and also which is not
// used by other spilled operands of the same instruction. Then it uses
// this register temporarily to accommodate the spilled value.
//----------------------------------------------------------------------------
/// Insert spill code for AN operand whose LR was spilled. May be called
/// repeatedly for a single MachineInstr if it has many spilled operands. On
/// each call, it finds a register which is not live at that instruction and
/// also which is not used by other spilled operands of the same
/// instruction. Then it uses this register temporarily to accommodate the
/// spilled value.
///
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
MachineBasicBlock::iterator& MII,
MachineBasicBlock &MBB,
@ -716,8 +683,7 @@ void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
// for the copy and not used across MInst.
int scratchRegType = -1;
int scratchReg = -1;
if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
{
if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
MInst, MIBef, MIAft);
assert(scratchReg != MRI.getInvalidRegNum());
@ -761,23 +727,15 @@ void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
}
//----------------------------------------------------------------------------
// This method inserts caller saving/restoring instructions before/after
// a call machine instruction. The caller saving/restoring instructions are
// inserted like:
// ** caller saving instructions
// other instructions inserted for the call by ColorCallArg
// CALL instruction
// other instructions inserted for the call ColorCallArg
// ** caller restoring instructions
//----------------------------------------------------------------------------
/// Insert caller saving/restoring instructions before/after a call machine
/// instruction (before or after any other instructions that were inserted for
/// the call).
///
void
PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
std::vector<MachineInstr*> &instrnsAfter,
MachineInstr *CallMI,
const BasicBlock *BB)
{
const BasicBlock *BB) {
assert(TM.getInstrInfo().isCall(CallMI->getOpCode()));
// hash set to record which registers were saved/restored
@ -933,15 +891,11 @@ PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
}
//----------------------------------------------------------------------------
// We can use the following method to get a temporary register to be used
// BEFORE any given machine instruction. If there is a register available,
// this method will simply return that register and set MIBef = MIAft = NULL.
// Otherwise, it will return a register and MIAft and MIBef will contain
// two instructions used to free up this returned register.
// Returned register number is the UNIFIED register number
//----------------------------------------------------------------------------
/// Returns the unified register number of a temporary register to be used
/// BEFORE MInst. If no register is available, it will pick one and modify
/// MIBef and MIAft to contain instructions used to free up this returned
/// register.
///
int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
const ValueSet *LVSetBef,
MachineInstr *MInst,
@ -961,8 +915,7 @@ int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
// Check if we need a scratch register to copy this register to memory.
int scratchRegType = -1;
if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
{
if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
MInst, MIBef, MIAft);
assert(scratchReg != MRI.getInvalidRegNum());
@ -974,9 +927,7 @@ int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg));
MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
}
else
{ // the register can be copied directly to/from memory so do it.
} else { // the register can be copied directly to/from memory so do it.
MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
}
@ -986,17 +937,13 @@ int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
}
//----------------------------------------------------------------------------
// This method is called to get a new unused register that can be used
// to accommodate a temporary value. This method may be called several times
// for a single machine instruction. Each time it is called, it finds a
// register which is not live at that instruction and also which is not used
// by other spilled operands of the same instruction. Return register number
// is relative to the register class, NOT the unified number.
//----------------------------------------------------------------------------
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC,
const int RegType,
/// Returns the register-class register number of a new unused register that
/// can be used to accommodate a temporary value. May be called repeatedly
/// for a single MachineInstr. On each call, it finds a register which is not
/// live at that instruction and which is not used by any spilled operands of
/// that instruction.
///
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType,
const MachineInstr *MInst,
const ValueSet* LVSetBef) {
RC->clearColorsUsed(); // Reset array
@ -1033,11 +980,9 @@ int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC,
}
//----------------------------------------------------------------------------
// Get any other register in a register class, other than what is used
// by operands of a machine instruction. Returns the unified reg number.
//----------------------------------------------------------------------------
/// Return the unified register number of a register in class RC which is not
/// used by any operands of MInst.
///
int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC,
const int RegType,
const MachineInstr *MInst) {
@ -1054,12 +999,10 @@ int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC,
}
//----------------------------------------------------------------------------
// This method modifies the IsColorUsedArr of the register class passed to it.
// It sets the bits corresponding to the registers used by this machine
// instructions. Both explicit and implicit operands are set.
//----------------------------------------------------------------------------
/// Modify the IsColorUsedArr of register class RC, by setting the bits
/// corresponding to register RegNo. This is a helper method of
/// setRelRegsUsedByThisInst().
///
static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
const TargetRegInfo &TRI) {
unsigned classId = 0;
@ -1069,13 +1012,13 @@ static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
}
void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
const MachineInstr *MI)
{
const MachineInstr *MI) {
assert(OperandsColoredMap[MI] == true &&
"Illegal to call setRelRegsUsedByThisInst() until colored operands "
"are marked for an instruction.");
// Add the registers already marked as used by the instruction.
// Add the registers already marked as used by the instruction. Both
// explicit and implicit operands are set.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).hasAllocatedReg())
markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI);
@ -1103,13 +1046,11 @@ void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
}
//----------------------------------------------------------------------------
// If there are delay slots for an instruction, the instructions
// added after it must really go after the delayed instruction(s).
// So, we move the InstrAfter of that instruction to the
// corresponding delayed instruction using the following method.
//----------------------------------------------------------------------------
/// If there are delay slots for an instruction, the instructions added after
/// it must really go after the delayed instruction(s). So, we Move the
/// InstrAfter of that instruction to the corresponding delayed instruction
/// using the following method.
///
void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
const MachineInstr *DelayedMI)
{
@ -1141,13 +1082,11 @@ void PhyRegAlloc::colorIncomingArgs()
}
//----------------------------------------------------------------------------
// This method determines whether the suggested color of each live range
// is really usable, and then calls its setSuggestedColorUsable() method to
// record the answer. A suggested color is NOT usable when the suggested color
// is volatile AND when there are call interferences.
//----------------------------------------------------------------------------
/// Determine whether the suggested color of each live range is really usable,
/// and then call its setSuggestedColorUsable() method to record the answer. A
/// suggested color is NOT usable when the suggested color is volatile AND
/// when there are call interferences.
///
void PhyRegAlloc::markUnusableSugColors()
{
LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin();
@ -1165,13 +1104,10 @@ void PhyRegAlloc::markUnusableSugColors()
}
//----------------------------------------------------------------------------
// The following method will set the stack offsets of the live ranges that
// are decided to be spilled. This must be called just after coloring the
// LRs using the graph coloring algo. For each live range that is spilled,
// this method allocate a new spill position on the stack.
//----------------------------------------------------------------------------
/// For each live range that is spilled, allocates a new spill position on the
/// stack, and set the stack offsets of the live range that will be spilled to
/// that position. This must be called just after coloring the LRs.
///
void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n";
@ -1235,8 +1171,11 @@ namespace {
};
}
void PhyRegAlloc::saveState ()
{
/// Save the global register allocation decisions made by the register
/// allocator so that they can be accessed later (sort of like "poor man's
/// debug info").
///
void PhyRegAlloc::saveState () {
std::vector<Constant *> state;
unsigned Insn = 0;
LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end ();
@ -1284,6 +1223,12 @@ void PhyRegAlloc::saveState ()
FnAllocState[Fn] = S;
}
/// Check the saved state filled in by saveState(), and abort if it looks
/// wrong. Only used when debugging.
///
void PhyRegAlloc::verifySavedState () {
/// not yet implemented
}
bool PhyRegAlloc::doFinalization (Module &M) {
if (!SaveRegAllocState)
@ -1332,10 +1277,9 @@ bool PhyRegAlloc::doFinalization (Module &M) {
}
//----------------------------------------------------------------------------
// The entry point to Register Allocation
//----------------------------------------------------------------------------
/// Allocate registers for the machine code previously generated for F using
/// the graph-coloring algorithm.
///
bool PhyRegAlloc::runOnFunction (Function &F) {
if (DEBUG_RA)
std::cerr << "\n********* Function "<< F.getName () << " ***********\n";
@ -1406,6 +1350,9 @@ bool PhyRegAlloc::runOnFunction (Function &F) {
// Save register allocation state for this function in a Constant.
if (SaveRegAllocState)
saveState();
if (DEBUG_RA) { // Check our work.
verifySavedState ();
}
// Now update the machine code with register names and add any
// additional code inserted by the register allocator to the instruction

View File

@ -73,18 +73,13 @@ void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const {
}
//----------------------------------------------------------------------------
// This method initially creates interference graphs (one in each reg class)
// and IGNodeList (one in each IG). The actual nodes will be pushed later.
//----------------------------------------------------------------------------
/// Initialize interference graphs (one in each reg class) and IGNodeLists
/// (one in each IG). The actual nodes will be pushed later.
///
void PhyRegAlloc::createIGNodeListsAndIGs() {
if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n";
// hash map iterator
LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();
// hash map end
LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();
for (; HMI != HMIEnd ; ++HMI ) {
@ -114,15 +109,12 @@ void PhyRegAlloc::createIGNodeListsAndIGs() {
}
//----------------------------------------------------------------------------
// This method will add all interferences at for a given instruction.
// Interference occurs only if the LR of Def (Inst or Arg) is of the same reg
// class as that of live var. The live var passed to this function is the
// LVset AFTER the instruction
//----------------------------------------------------------------------------
void PhyRegAlloc::addInterference(const Value *Def,
const ValueSet *LVSet,
/// Add all interferences for a given instruction. Interference occurs only
/// if the LR of Def (Inst or Arg) is of the same reg class as that of live
/// var. The live var passed to this function is the LVset AFTER the
/// instruction.
///
void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet,
bool isCallInst) {
ValueSet::const_iterator LIt = LVSet->begin();
@ -153,13 +145,11 @@ void PhyRegAlloc::addInterference(const Value *Def,
}
//----------------------------------------------------------------------------
// For a call instruction, this method sets the CallInterference flag in
// the LR of each variable live int the Live Variable Set live after the
// call instruction (except the return value of the call instruction - since
// the return value does not interfere with that call itself).
//----------------------------------------------------------------------------
/// For a call instruction, this method sets the CallInterference flag in
/// the LR of each variable live in the Live Variable Set live after the
/// call instruction (except the return value of the call instruction - since
/// the return value does not interfere with that call itself).
///
void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst,
const ValueSet *LVSetAft) {
if (DEBUG_RA >= RA_DEBUG_Interference)
@ -211,14 +201,11 @@ void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst,
}
//----------------------------------------------------------------------------
// This method will walk thru code and create interferences in the IG of
// each RegClass. Also, this method calculates the spill cost of each
// Live Range (it is done in this method to save another pass over the code).
//----------------------------------------------------------------------------
void PhyRegAlloc::buildInterferenceGraphs()
{
/// Create interferences in the IG of each RegClass, and calculate the spill
/// cost of each Live Range (it is done in this method to save another pass
/// over the code).
///
void PhyRegAlloc::buildInterferenceGraphs() {
if (DEBUG_RA >= RA_DEBUG_Interference)
std::cerr << "Creating interference graphs ...\n";
@ -261,7 +248,10 @@ void PhyRegAlloc::buildInterferenceGraphs()
if (LR) LR->addSpillCost(BBLoopDepthCost);
}
// if there are multiple defs in this instruction e.g. in SETX
// Mark all operands of pseudo-instructions as interfering with one
// another. This must be done because pseudo-instructions may be
// expanded to multiple instructions by the assembler, so all the
// operands must get distinct registers.
if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode()))
addInterf4PseudoInstr(MInst);
@ -285,13 +275,9 @@ void PhyRegAlloc::buildInterferenceGraphs()
}
//--------------------------------------------------------------------------
// Pseudo-instructions may be expanded to multiple instructions by the
// assembler. Consequently, all the operands must get distinct registers.
// Therefore, we mark all operands of a pseudo-instruction as interfering
// with one another.
//--------------------------------------------------------------------------
/// Mark all operands of the given MachineInstr as interfering with one
/// another.
///
void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
bool setInterf = false;
@ -325,10 +311,8 @@ void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
}
//----------------------------------------------------------------------------
// This method adds interferences for incoming arguments to a function.
//----------------------------------------------------------------------------
/// Add interferences for incoming arguments to a function.
///
void PhyRegAlloc::addInterferencesForArgs() {
// get the InSet of root BB
const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());
@ -343,63 +327,46 @@ void PhyRegAlloc::addInterferencesForArgs() {
}
//----------------------------------------------------------------------------
// This method is called after register allocation is complete to set the
// allocated registers in the machine code. This code will add register numbers
// to MachineOperands that contain a Value. Also it calls target specific
// methods to produce caller saving instructions. At the end, it adds all
// additional instructions produced by the register allocator to the
// instruction stream.
//----------------------------------------------------------------------------
/// The following are utility functions used solely by updateMachineCode and
/// the functions that it calls. They should probably be folded back into
/// updateMachineCode at some point.
///
//-----------------------------
// Utility functions used below
//-----------------------------
inline void
InsertBefore(MachineInstr* newMI,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII)
{
// used by: updateMachineCode (1 time), PrependInstructions (1 time)
inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII) {
MII = MBB.insert(MII, newMI);
++MII;
}
inline void
InsertAfter(MachineInstr* newMI,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII)
{
// used by: AppendInstructions (1 time)
inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII) {
++MII; // insert before the next instruction
MII = MBB.insert(MII, newMI);
}
inline void
DeleteInstruction(MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII)
{
// used by: updateMachineCode (1 time)
inline void DeleteInstruction(MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII) {
MII = MBB.erase(MII);
}
inline void
SubstituteInPlace(MachineInstr* newMI,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII)
{
// used by: updateMachineCode (1 time)
inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII) {
*MII = newMI;
}
inline void
PrependInstructions(std::vector<MachineInstr *> &IBef,
// used by: updateMachineCode (2 times)
inline void PrependInstructions(std::vector<MachineInstr *> &IBef,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII,
const std::string& msg)
{
if (!IBef.empty())
{
const std::string& msg) {
if (!IBef.empty()) {
MachineInstr* OrigMI = *MII;
std::vector<MachineInstr *>::iterator AdIt;
for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt)
{
for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) {
if (DEBUG_RA) {
if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI;
std::cerr << msg << "PREPENDed instr:\n " << **AdIt << "\n";
@ -409,18 +376,15 @@ PrependInstructions(std::vector<MachineInstr *> &IBef,
}
}
inline void
AppendInstructions(std::vector<MachineInstr *> &IAft,
// used by: updateMachineCode (1 time)
inline void AppendInstructions(std::vector<MachineInstr *> &IAft,
MachineBasicBlock& MBB,
MachineBasicBlock::iterator& MII,
const std::string& msg)
{
if (!IAft.empty())
{
const std::string& msg) {
if (!IAft.empty()) {
MachineInstr* OrigMI = *MII;
std::vector<MachineInstr *>::iterator AdIt;
for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt )
{
for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) {
if (DEBUG_RA) {
if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI;
std::cerr << msg << "APPENDed instr:\n " << **AdIt << "\n";
@ -430,6 +394,10 @@ AppendInstructions(std::vector<MachineInstr *> &IAft,
}
}
/// Set the registers for operands in the given MachineInstr, if a register was
/// successfully allocated. Return true if any of its operands has been marked
/// for spill.
///
bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
{
bool instrNeedsSpills = false;
@ -437,12 +405,10 @@ bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
// First, set the registers for operands in the machine instruction
// if a register was successfully allocated. Do this first because we
// will need to know which registers are already used by this instr'n.
for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
{
for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
if (Op.getType() == MachineOperand::MO_VirtualRegister ||
Op.getType() == MachineOperand::MO_CCRegister)
{
Op.getType() == MachineOperand::MO_CCRegister) {
const Value *const Val = Op.getVRegValue();
if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) {
// Remember if any operand needs spilling
@ -460,9 +426,13 @@ bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
return instrNeedsSpills;
}
/// Mark allocated registers (using markAllocatedRegs()) on the instruction
/// that MII points to. Then, if it's a call instruction, insert caller-saving
/// code before and after it. Finally, insert spill code before and after it,
/// using insertCode4SpilledLR().
///
void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
MachineBasicBlock &MBB)
{
MachineBasicBlock &MBB) {
MachineInstr* MInst = *MII;
unsigned Opcode = MInst->getOpCode();
@ -493,12 +463,10 @@ void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
// registers. This must be done even for call return instructions
// since those are not handled by the special code above.
if (instrNeedsSpills)
for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
{
for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
if (Op.getType() == MachineOperand::MO_VirtualRegister ||
Op.getType() == MachineOperand::MO_CCRegister)
{
Op.getType() == MachineOperand::MO_CCRegister) {
const Value* Val = Op.getVRegValue();
if (const LiveRange *LR = LRI->getLiveRangeForValue(Val))
if (LR->isMarkedForSpill())
@ -507,6 +475,10 @@ void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
} // for each operand
}
/// Iterate over all the MachineBasicBlocks in the current function and set
/// the allocated registers for each instruction (using updateInstruction()),
/// after register allocation is complete. Then move code out of delay slots.
///
void PhyRegAlloc::updateMachineCode()
{
// Insert any instructions needed at method entry
@ -519,7 +491,6 @@ void PhyRegAlloc::updateMachineCode()
for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
BBI != BBE; ++BBI) {
MachineBasicBlock &MBB = *BBI;
// Iterate over all machine instructions in BB and mark operands with
@ -546,8 +517,7 @@ void PhyRegAlloc::updateMachineCode()
for (MachineBasicBlock::iterator MII = MBB.begin();
MII != MBB.end(); ++MII)
if (unsigned delaySlots =
TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode()))
{
TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode())) {
MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1);
// Check the 2 conditions above:
@ -562,8 +532,7 @@ void PhyRegAlloc::updateMachineCode()
(AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 ||
AddedInstrMap[DelaySlotMI].InstrnsAfter.size() > 0));
if (cond1 || cond2)
{
if (cond1 || cond2) {
assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 &&
"FIXME: Moving an annulled delay slot instruction!");
assert(delaySlots==1 &&
@ -646,15 +615,13 @@ void PhyRegAlloc::updateMachineCode()
}
//----------------------------------------------------------------------------
// This method inserts spill code for AN operand whose LR was spilled.
// This method may be called several times for a single machine instruction
// if it contains many spilled operands. Each time it is called, it finds
// a register which is not live at that instruction and also which is not
// used by other spilled operands of the same instruction. Then it uses
// this register temporarily to accommodate the spilled value.
//----------------------------------------------------------------------------
/// Insert spill code for AN operand whose LR was spilled. May be called
/// repeatedly for a single MachineInstr if it has many spilled operands. On
/// each call, it finds a register which is not live at that instruction and
/// also which is not used by other spilled operands of the same
/// instruction. Then it uses this register temporarily to accommodate the
/// spilled value.
///
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
MachineBasicBlock::iterator& MII,
MachineBasicBlock &MBB,
@ -716,8 +683,7 @@ void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
// for the copy and not used across MInst.
int scratchRegType = -1;
int scratchReg = -1;
if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
{
if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
MInst, MIBef, MIAft);
assert(scratchReg != MRI.getInvalidRegNum());
@ -761,23 +727,15 @@ void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
}
//----------------------------------------------------------------------------
// This method inserts caller saving/restoring instructions before/after
// a call machine instruction. The caller saving/restoring instructions are
// inserted like:
// ** caller saving instructions
// other instructions inserted for the call by ColorCallArg
// CALL instruction
// other instructions inserted for the call ColorCallArg
// ** caller restoring instructions
//----------------------------------------------------------------------------
/// Insert caller saving/restoring instructions before/after a call machine
/// instruction (before or after any other instructions that were inserted for
/// the call).
///
void
PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
std::vector<MachineInstr*> &instrnsAfter,
MachineInstr *CallMI,
const BasicBlock *BB)
{
const BasicBlock *BB) {
assert(TM.getInstrInfo().isCall(CallMI->getOpCode()));
// hash set to record which registers were saved/restored
@ -933,15 +891,11 @@ PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
}
//----------------------------------------------------------------------------
// We can use the following method to get a temporary register to be used
// BEFORE any given machine instruction. If there is a register available,
// this method will simply return that register and set MIBef = MIAft = NULL.
// Otherwise, it will return a register and MIAft and MIBef will contain
// two instructions used to free up this returned register.
// Returned register number is the UNIFIED register number
//----------------------------------------------------------------------------
/// Returns the unified register number of a temporary register to be used
/// BEFORE MInst. If no register is available, it will pick one and modify
/// MIBef and MIAft to contain instructions used to free up this returned
/// register.
///
int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
const ValueSet *LVSetBef,
MachineInstr *MInst,
@ -961,8 +915,7 @@ int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
// Check if we need a scratch register to copy this register to memory.
int scratchRegType = -1;
if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
{
if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
MInst, MIBef, MIAft);
assert(scratchReg != MRI.getInvalidRegNum());
@ -974,9 +927,7 @@ int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg));
MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
}
else
{ // the register can be copied directly to/from memory so do it.
} else { // the register can be copied directly to/from memory so do it.
MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
}
@ -986,17 +937,13 @@ int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
}
//----------------------------------------------------------------------------
// This method is called to get a new unused register that can be used
// to accommodate a temporary value. This method may be called several times
// for a single machine instruction. Each time it is called, it finds a
// register which is not live at that instruction and also which is not used
// by other spilled operands of the same instruction. Return register number
// is relative to the register class, NOT the unified number.
//----------------------------------------------------------------------------
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC,
const int RegType,
/// Returns the register-class register number of a new unused register that
/// can be used to accommodate a temporary value. May be called repeatedly
/// for a single MachineInstr. On each call, it finds a register which is not
/// live at that instruction and which is not used by any spilled operands of
/// that instruction.
///
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType,
const MachineInstr *MInst,
const ValueSet* LVSetBef) {
RC->clearColorsUsed(); // Reset array
@ -1033,11 +980,9 @@ int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC,
}
//----------------------------------------------------------------------------
// Get any other register in a register class, other than what is used
// by operands of a machine instruction. Returns the unified reg number.
//----------------------------------------------------------------------------
/// Return the unified register number of a register in class RC which is not
/// used by any operands of MInst.
///
int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC,
const int RegType,
const MachineInstr *MInst) {
@ -1054,12 +999,10 @@ int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC,
}
//----------------------------------------------------------------------------
// This method modifies the IsColorUsedArr of the register class passed to it.
// It sets the bits corresponding to the registers used by this machine
// instructions. Both explicit and implicit operands are set.
//----------------------------------------------------------------------------
/// Modify the IsColorUsedArr of register class RC, by setting the bits
/// corresponding to register RegNo. This is a helper method of
/// setRelRegsUsedByThisInst().
///
static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
const TargetRegInfo &TRI) {
unsigned classId = 0;
@ -1069,13 +1012,13 @@ static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
}
void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
const MachineInstr *MI)
{
const MachineInstr *MI) {
assert(OperandsColoredMap[MI] == true &&
"Illegal to call setRelRegsUsedByThisInst() until colored operands "
"are marked for an instruction.");
// Add the registers already marked as used by the instruction.
// Add the registers already marked as used by the instruction. Both
// explicit and implicit operands are set.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).hasAllocatedReg())
markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI);
@ -1103,13 +1046,11 @@ void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
}
//----------------------------------------------------------------------------
// If there are delay slots for an instruction, the instructions
// added after it must really go after the delayed instruction(s).
// So, we move the InstrAfter of that instruction to the
// corresponding delayed instruction using the following method.
//----------------------------------------------------------------------------
/// If there are delay slots for an instruction, the instructions added after
/// it must really go after the delayed instruction(s). So, we Move the
/// InstrAfter of that instruction to the corresponding delayed instruction
/// using the following method.
///
void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
const MachineInstr *DelayedMI)
{
@ -1141,13 +1082,11 @@ void PhyRegAlloc::colorIncomingArgs()
}
//----------------------------------------------------------------------------
// This method determines whether the suggested color of each live range
// is really usable, and then calls its setSuggestedColorUsable() method to
// record the answer. A suggested color is NOT usable when the suggested color
// is volatile AND when there are call interferences.
//----------------------------------------------------------------------------
/// Determine whether the suggested color of each live range is really usable,
/// and then call its setSuggestedColorUsable() method to record the answer. A
/// suggested color is NOT usable when the suggested color is volatile AND
/// when there are call interferences.
///
void PhyRegAlloc::markUnusableSugColors()
{
LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin();
@ -1165,13 +1104,10 @@ void PhyRegAlloc::markUnusableSugColors()
}
//----------------------------------------------------------------------------
// The following method will set the stack offsets of the live ranges that
// are decided to be spilled. This must be called just after coloring the
// LRs using the graph coloring algo. For each live range that is spilled,
// this method allocate a new spill position on the stack.
//----------------------------------------------------------------------------
/// For each live range that is spilled, allocates a new spill position on the
/// stack, and set the stack offsets of the live range that will be spilled to
/// that position. This must be called just after coloring the LRs.
///
void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n";
@ -1235,8 +1171,11 @@ namespace {
};
}
void PhyRegAlloc::saveState ()
{
/// Save the global register allocation decisions made by the register
/// allocator so that they can be accessed later (sort of like "poor man's
/// debug info").
///
void PhyRegAlloc::saveState () {
std::vector<Constant *> state;
unsigned Insn = 0;
LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end ();
@ -1284,6 +1223,12 @@ void PhyRegAlloc::saveState ()
FnAllocState[Fn] = S;
}
/// Check the saved state filled in by saveState(), and abort if it looks
/// wrong. Only used when debugging.
///
void PhyRegAlloc::verifySavedState () {
/// not yet implemented
}
bool PhyRegAlloc::doFinalization (Module &M) {
if (!SaveRegAllocState)
@ -1332,10 +1277,9 @@ bool PhyRegAlloc::doFinalization (Module &M) {
}
//----------------------------------------------------------------------------
// The entry point to Register Allocation
//----------------------------------------------------------------------------
/// Allocate registers for the machine code previously generated for F using
/// the graph-coloring algorithm.
///
bool PhyRegAlloc::runOnFunction (Function &F) {
if (DEBUG_RA)
std::cerr << "\n********* Function "<< F.getName () << " ***********\n";
@ -1406,6 +1350,9 @@ bool PhyRegAlloc::runOnFunction (Function &F) {
// Save register allocation state for this function in a Constant.
if (SaveRegAllocState)
saveState();
if (DEBUG_RA) { // Check our work.
verifySavedState ();
}
// Now update the machine code with register names and add any
// additional code inserted by the register allocator to the instruction