Change SelectionDAG type legalization to allow BUILD_VECTOR operands to be

promoted to legal types without changing the type of the vector.  This is
following a suggestion from Duncan
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-February/019923.html).
The transformation that used to be done during type legalization is now
postponed to DAG legalization.  This allows the BUILD_VECTORs to be optimized
and potentially handled specially by target-specific code.

It turns out that this is also consistent with an optimization done by the
DAG combiner: a BUILD_VECTOR and INSERT_VECTOR_ELT may be combined by
replacing one of the BUILD_VECTOR operands with the newly inserted element;
but INSERT_VECTOR_ELT allows its scalar operand to be larger than the
element type, with any extra high bits being implicitly truncated.  The
result is a BUILD_VECTOR where one of the operands has a type larger the
the vector element type.

Any code that operates on BUILD_VECTORs may now need to be aware of the
potential type discrepancy between the vector element type and the
BUILD_VECTOR operands.  This patch updates all of the places that I could
find to handle that case.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68996 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Bob Wilson 2009-04-13 22:05:19 +00:00
parent 88c7af096b
commit b1303d05a8
6 changed files with 83 additions and 32 deletions

View File

@ -290,7 +290,11 @@ namespace ISD {
/// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
/// with the specified, possibly variable, elements. The number of elements /// with the specified, possibly variable, elements. The number of elements
/// is required to be a power of two. /// is required to be a power of two. The types of the operands must
/// all be the same. They must match the vector element type, except if an
/// integer element type is not legal for the target, the operands may
/// be promoted to a legal type, in which case the operands are implicitly
/// truncated to the vector element types.
BUILD_VECTOR, BUILD_VECTOR,
/// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element

View File

@ -3795,7 +3795,7 @@ SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
/// destination element value type. /// destination element value type.
SDValue DAGCombiner:: SDValue DAGCombiner::
ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) { ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
MVT SrcEltVT = BV->getOperand(0).getValueType(); MVT SrcEltVT = BV->getValueType(0).getVectorElementType();
// If this is already the right type, we're done. // If this is already the right type, we're done.
if (SrcEltVT == DstEltVT) return SDValue(BV, 0); if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
@ -3808,8 +3808,17 @@ ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
if (SrcBitSize == DstBitSize) { if (SrcBitSize == DstBitSize) {
SmallVector<SDValue, 8> Ops; SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
SDValue Op = BV->getOperand(i);
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated. Make that explicit here.
if (Op.getValueType() != SrcEltVT) {
if (Op.getOpcode() == ISD::UNDEF)
Op = DAG.getUNDEF(SrcEltVT);
else
Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
}
Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(), Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(),
DstEltVT, BV->getOperand(i))); DstEltVT, Op));
AddToWorkList(Ops.back().getNode()); AddToWorkList(Ops.back().getNode());
} }
MVT VT = MVT::getVectorVT(DstEltVT, MVT VT = MVT::getVectorVT(DstEltVT,
@ -3860,8 +3869,8 @@ ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
if (Op.getOpcode() == ISD::UNDEF) continue; if (Op.getOpcode() == ISD::UNDEF) continue;
EltIsUndef = false; EltIsUndef = false;
NewBits |= NewBits |= (APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).
APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize); zextOrTrunc(SrcBitSize).zext(DstBitSize));
} }
if (EltIsUndef) if (EltIsUndef)
@ -3889,7 +3898,8 @@ ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
continue; continue;
} }
APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue(); APInt OpVal = APInt(cast<ConstantSDNode>(BV->getOperand(i))->
getAPIntValue()).zextOrTrunc(SrcBitSize);
for (unsigned j = 0; j != NumOutputsPerInput; ++j) { for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
APInt ThisVal = APInt(OpVal).trunc(DstBitSize); APInt ThisVal = APInt(OpVal).trunc(DstBitSize);

View File

@ -5483,6 +5483,41 @@ SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
MVT OpVT = SplatValue.getValueType(); MVT OpVT = SplatValue.getValueType();
MVT EltVT = VT.getVectorElementType(); MVT EltVT = VT.getVectorElementType();
// Check if the BUILD_VECTOR operands were promoted to legalize their types.
if (OpVT != EltVT) {
// Now that the DAG combiner and target-specific lowering have had a
// chance to optimize/recognize the BUILD_VECTOR with promoted operands,
// transform it so the operand types match the vector. Build a vector of
// half the length out of elements of twice the bitwidth.
// For example <4 x i16> -> <2 x i32>.
MVT NewVT = MVT::getIntegerVT(2 * EltVT.getSizeInBits());
assert(OpVT.isSimple() && NewVT.isSimple());
SmallVector<SDValue, 16> NewElts;
for (unsigned i = 0; i < NumElems; i += 2) {
// Combine two successive elements into one promoted element.
SDValue Lo = Node->getOperand(i);
SDValue Hi = Node->getOperand(i+1);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getZeroExtendInReg(Lo, dl, EltVT);
Hi = DAG.getNode(ISD::SHL, dl, OpVT, Hi,
DAG.getConstant(EltVT.getSizeInBits(),
TLI.getPointerTy()));
NewElts.push_back(DAG.getNode(ISD::OR, dl, OpVT, Lo, Hi));
}
SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::getVectorVT(NewVT, NewElts.size()),
&NewElts[0], NewElts.size());
// Recurse
NewVec = ExpandBUILD_VECTOR(NewVec.getNode());
// Convert the new vector to the old vector type.
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewVec);
}
// If the only non-undef value is the low element, turn this into a // If the only non-undef value is the low element, turn this into a
// SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
bool isOnlyLowElement = true; bool isOnlyLowElement = true;

View File

@ -799,32 +799,20 @@ SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
MVT VecVT = N->getValueType(0); MVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements(); unsigned NumElts = VecVT.getVectorNumElements();
assert(!(NumElts & 1) && "Legal vector of one illegal element?"); assert(!(NumElts & 1) && "Legal vector of one illegal element?");
DebugLoc dl = N->getDebugLoc();
// Build a vector of half the length out of elements of twice the bitwidth. // Promote the inserted value. The type does not need to match the
// For example <4 x i16> -> <2 x i32>. // vector element type. Check that any extra bits introduced will be
MVT OldVT = N->getOperand(0).getValueType(); // truncated away.
MVT NewVT = MVT::getIntegerVT(2 * OldVT.getSizeInBits()); assert(N->getOperand(0).getValueType().getSizeInBits() >=
assert(OldVT.isSimple() && NewVT.isSimple()); N->getValueType(0).getVectorElementType().getSizeInBits() &&
"Type of inserted value narrower than vector element type!");
std::vector<SDValue> NewElts; SmallVector<SDValue, 16> NewOps;
NewElts.reserve(NumElts/2); for (unsigned i = 0; i < NumElts; ++i) {
NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
for (unsigned i = 0; i < NumElts; i += 2) {
// Combine two successive elements into one promoted element.
SDValue Lo = N->getOperand(i);
SDValue Hi = N->getOperand(i+1);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
NewElts.push_back(JoinIntegers(Lo, Hi));
} }
SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, return DAG.UpdateNodeOperands(SDValue(N, 0), &NewOps[0], NumElts);
MVT::getVectorVT(NewVT, NewElts.size()),
&NewElts[0], NewElts.size());
// Convert the new vector to the old vector type.
return DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, NewVec);
} }
SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) { SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {

View File

@ -278,6 +278,9 @@ SDValue DAGTypeLegalizer::ExpandOp_BUILD_VECTOR(SDNode *N) {
MVT NewVT = TLI.getTypeToTransformTo(OldVT); MVT NewVT = TLI.getTypeToTransformTo(OldVT);
DebugLoc dl = N->getDebugLoc(); DebugLoc dl = N->getDebugLoc();
assert(OldVT == VecVT.getVectorElementType() &&
"BUILD_VECTOR operand type doesn't match vector element type!");
// Build a vector of twice the length out of the expanded elements. // Build a vector of twice the length out of the expanded elements.
// For example <3 x i64> -> <6 x i32>. // For example <3 x i64> -> <6 x i32>.
std::vector<SDValue> NewElts; std::vector<SDValue> NewElts;

View File

@ -768,7 +768,8 @@ void SelectionDAG::VerifyNode(SDNode *N) {
// following checks at least makes it possible to legalize most of the time. // following checks at least makes it possible to legalize most of the time.
// MVT EltVT = N->getValueType(0).getVectorElementType(); // MVT EltVT = N->getValueType(0).getVectorElementType();
// for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) // for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
// assert(I->getValueType() == EltVT && // assert((I->getValueType() == EltVT ||
// I->getValueType() == TLI.getTypeToTransformTo(EltVT)) &&
// "Wrong operand type!"); // "Wrong operand type!");
break; break;
} }
@ -2550,8 +2551,17 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
// EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
// expanding large vector constants. // expanding large vector constants.
if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
return N1.getOperand(N2C->getZExtValue()); SDValue Elt = N1.getOperand(N2C->getZExtValue());
if (Elt.getValueType() != VT) {
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated. Make that explicit here.
assert(Elt.getValueType() == TLI.getTypeToTransformTo(VT) &&
"Bad type for BUILD_VECTOR operand");
Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
}
return Elt;
}
// EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
// operations are lowered to scalars. // operations are lowered to scalars.
@ -5569,7 +5579,8 @@ bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
if (OpVal.getOpcode() == ISD::UNDEF) if (OpVal.getOpcode() == ISD::UNDEF)
SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize); SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(sz) << BitPos; SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
zextOrTrunc(sz) << BitPos);
else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
else else