Redo LegalizeTypes soft float support for

SINT_TO_FP and UINT_TO_FP.  This now produces
the same code as LegalizeDAG (the previous
code was based on a mistaken idea of what
LegalizeDAG did in this case).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53288 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Duncan Sands 2008-07-09 12:07:22 +00:00
parent 452911c468
commit b5508e4237
2 changed files with 104 additions and 97 deletions

View File

@ -20,9 +20,6 @@
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
using namespace llvm;
/// GetFPLibCall - Return the right libcall for the given floating point type.
@ -68,8 +65,8 @@ void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) {
case ISD::LOAD: R = SoftenFloatRes_LOAD(N); break;
case ISD::SELECT: R = SoftenFloatRes_SELECT(N); break;
case ISD::SELECT_CC: R = SoftenFloatRes_SELECT_CC(N); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: R = SoftenFloatRes_XINT_TO_FP(N); break;
case ISD::SINT_TO_FP: R = SoftenFloatRes_SINT_TO_FP(N); break;
case ISD::UINT_TO_FP: R = SoftenFloatRes_UINT_TO_FP(N); break;
case ISD::FADD: R = SoftenFloatRes_FADD(N); break;
case ISD::FMUL: R = SoftenFloatRes_FMUL(N); break;
@ -268,104 +265,104 @@ SDOperand DAGTypeLegalizer::SoftenFloatRes_SELECT_CC(SDNode *N) {
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
SDOperand DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) {
bool isSigned = N->getOpcode() == ISD::SINT_TO_FP;
MVT DestVT = N->getValueType(0);
SDOperand DAGTypeLegalizer::SoftenFloatRes_SINT_TO_FP(SDNode *N) {
SDOperand Op = N->getOperand(0);
MVT RVT = N->getValueType(0);
if (Op.getValueType() == MVT::i32) {
// simple 32-bit [signed|unsigned] integer to float/double expansion
// Get the stack frame index of a 8 byte buffer.
SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64);
// word offset constant for Hi/Lo address computation
SDOperand Offset =
DAG.getConstant(MVT(MVT::i32).getSizeInBits() / 8,
TLI.getPointerTy());
// set up Hi and Lo (into buffer) address based on endian
SDOperand Hi = StackSlot;
SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot, Offset);
if (TLI.isLittleEndian())
std::swap(Hi, Lo);
// if signed map to unsigned space
SDOperand OpMapped;
if (isSigned) {
// constant used to invert sign bit (signed to unsigned mapping)
SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32);
OpMapped = DAG.getNode(ISD::XOR, MVT::i32, Op, SignBit);
} else {
OpMapped = Op;
}
// store the lo of the constructed double - based on integer input
SDOperand Store1 = DAG.getStore(DAG.getEntryNode(),
OpMapped, Lo, NULL, 0);
// initial hi portion of constructed double
SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
// store the hi of the constructed double - biased exponent
SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0);
// load the constructed double
SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0);
// FP constant to bias correct the final result
SDOperand Bias = DAG.getConstantFP(isSigned ?
BitsToDouble(0x4330000080000000ULL)
: BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// subtract the bias
SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias);
// final result
SDOperand Result;
// handle final rounding
if (DestVT == MVT::f64) {
// do nothing
Result = Sub;
} else if (DestVT.bitsLT(MVT::f64)) {
Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
DAG.getIntPtrConstant(0));
} else if (DestVT.bitsGT(MVT::f64)) {
Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
}
return BitConvertToInteger(Result);
}
assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op);
SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultType(Op), Op,
DAG.getConstant(0, Op.getValueType()),
ISD::SETLT);
SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
// If the sign bit of the integer is set, the large number will be treated
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
switch (Op.getValueType().getSimpleVT()) {
default: assert(0 && "Unsupported integer type!");
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
case MVT::i32:
switch (RVT.getSimpleVT()) {
case MVT::f32:
LC = RTLIB::SINTTOFP_I32_F32;
break;
case MVT::f64:
LC = RTLIB::SINTTOFP_I32_F64;
break;
default:
break;
}
break;
case MVT::i64:
switch (RVT.getSimpleVT()) {
case MVT::f32:
LC = RTLIB::SINTTOFP_I64_F32;
break;
case MVT::f64:
LC = RTLIB::SINTTOFP_I64_F64;
break;
case MVT::f80:
LC = RTLIB::SINTTOFP_I64_F80;
break;
case MVT::ppcf128:
LC = RTLIB::SINTTOFP_I64_PPCF128;
break;
default:
break;
}
break;
case MVT::i128:
switch (RVT.getSimpleVT()) {
case MVT::f32:
LC = RTLIB::SINTTOFP_I128_F32;
break;
case MVT::f64:
LC = RTLIB::SINTTOFP_I128_F64;
break;
case MVT::f80:
LC = RTLIB::SINTTOFP_I128_F80;
break;
case MVT::ppcf128:
LC = RTLIB::SINTTOFP_I128_PPCF128;
break;
default:
break;
}
break;
default:
break;
}
if (TLI.isLittleEndian()) FF <<= 32;
static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SINT_TO_FP!");
SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
SDOperand FudgeInReg;
if (DestVT == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0);
else {
FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestVT,
DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
MVT::f32);
return MakeLibCall(LC, TLI.getTypeToTransformTo(RVT), &Op, 1, false);
}
SDOperand DAGTypeLegalizer::SoftenFloatRes_UINT_TO_FP(SDNode *N) {
SDOperand Op = N->getOperand(0);
MVT RVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
switch (Op.getValueType().getSimpleVT()) {
case MVT::i32:
switch (RVT.getSimpleVT()) {
case MVT::f32:
LC = RTLIB::UINTTOFP_I32_F32;
break;
case MVT::f64:
LC = RTLIB::UINTTOFP_I32_F64;
break;
default:
break;
}
break;
case MVT::i64:
switch (RVT.getSimpleVT()) {
case MVT::f32:
LC = RTLIB::UINTTOFP_I64_F32;
break;
case MVT::f64:
LC = RTLIB::UINTTOFP_I64_F64;
break;
default:
break;
}
break;
default:
break;
}
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UINT_TO_FP!");
return BitConvertToInteger(DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg));
return MakeLibCall(LC, TLI.getTypeToTransformTo(RVT), &Op, 1, false);
}
@ -539,6 +536,9 @@ SDOperand DAGTypeLegalizer::SoftenFloatOp_FP_TO_SINT(SDNode *N) {
case MVT::f64:
LC = RTLIB::FPTOSINT_F64_I32;
break;
case MVT::ppcf128:
LC = RTLIB::FPTOSINT_PPCF128_I32;
break;
default:
break;
}
@ -602,6 +602,12 @@ SDOperand DAGTypeLegalizer::SoftenFloatOp_FP_TO_UINT(SDNode *N) {
case MVT::f64:
LC = RTLIB::FPTOUINT_F64_I32;
break;
case MVT::f80:
LC = RTLIB::FPTOUINT_F80_I32;
break;
case MVT::ppcf128:
LC = RTLIB::FPTOUINT_PPCF128_I32;
break;
default:
break;
}

View File

@ -341,7 +341,8 @@ private:
SDOperand SoftenFloatRes_LOAD(SDNode *N);
SDOperand SoftenFloatRes_SELECT(SDNode *N);
SDOperand SoftenFloatRes_SELECT_CC(SDNode *N);
SDOperand SoftenFloatRes_XINT_TO_FP(SDNode *N);
SDOperand SoftenFloatRes_SINT_TO_FP(SDNode *N);
SDOperand SoftenFloatRes_UINT_TO_FP(SDNode *N);
// Operand Float to Integer Conversion.
bool SoftenFloatOperand(SDNode *N, unsigned OpNo);