Extract live range calculations from SplitKit.

SplitKit will soon need two copies of these data structures, and the
algorithms will also be useful when LiveIntervalAnalysis becomes
independent of LiveVariables.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139572 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2011-09-13 01:34:21 +00:00
parent 1582e7f1e2
commit b5a457c4cb
5 changed files with 516 additions and 306 deletions

View File

@ -30,6 +30,7 @@ add_llvm_library(LLVMCodeGen
LiveIntervalUnion.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp
LiveRangeCalc.cpp
LiveRangeEdit.cpp
LocalStackSlotAllocation.cpp
LowerSubregs.cpp

View File

@ -0,0 +1,271 @@
//===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the LiveRangeCalc class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveRangeCalc.h"
#include "llvm/CodeGen/MachineDominators.h"
using namespace llvm;
void LiveRangeCalc::reset(const MachineFunction *MF) {
unsigned N = MF->getNumBlockIDs();
Seen.clear();
Seen.resize(N);
LiveOut.resize(N);
LiveIn.clear();
}
// Transfer information from the LiveIn vector to the live ranges.
void LiveRangeCalc::updateLiveIns(VNInfo *OverrideVNI, SlotIndexes *Indexes) {
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
E = LiveIn.end(); I != E; ++I) {
if (!I->DomNode)
continue;
MachineBasicBlock *MBB = I->DomNode->getBlock();
VNInfo *VNI = OverrideVNI ? OverrideVNI : I->Value;
assert(VNI && "No live-in value found");
SlotIndex Start, End;
tie(Start, End) = Indexes->getMBBRange(MBB);
if (I->Kill.isValid())
I->LI->addRange(LiveRange(Start, I->Kill, VNI));
else {
I->LI->addRange(LiveRange(Start, End, VNI));
// The value is live-through, update LiveOut as well. Defer the Domtree
// lookup until it is needed.
assert(Seen.test(MBB->getNumber()));
LiveOut[MBB] = LiveOutPair(VNI, 0);
}
}
LiveIn.clear();
}
void LiveRangeCalc::extend(LiveInterval *LI,
SlotIndex Kill,
SlotIndexes *Indexes,
MachineDominatorTree *DomTree,
VNInfo::Allocator *Alloc) {
assert(LI && "Missing live range");
assert(Kill.isValid() && "Invalid SlotIndex");
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
SlotIndex LastUse = Kill.getPrevSlot();
MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(LastUse);
assert(Kill && "No MBB at Kill");
// Is there a def in the same MBB we can extend?
if (LI->extendInBlock(Indexes->getMBBStartIdx(KillMBB), LastUse))
return;
// Find the single reaching def, or determine if Kill is jointly dominated by
// multiple values, and we may need to create even more phi-defs to preserve
// VNInfo SSA form. Perform a search for all predecessor blocks where we
// know the dominating VNInfo.
VNInfo *VNI = findReachingDefs(LI, KillMBB, Kill, Indexes, DomTree);
// When there were multiple different values, we may need new PHIs.
if (!VNI)
updateSSA(Indexes, DomTree, Alloc);
updateLiveIns(VNI, Indexes);
}
// This function is called by a client after using the low-level API to add
// live-out and live-in blocks. The unique value optimization is not
// available, SplitEditor::transferValues handles that case directly anyway.
void LiveRangeCalc::calculateValues(SlotIndexes *Indexes,
MachineDominatorTree *DomTree,
VNInfo::Allocator *Alloc) {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
updateSSA(Indexes, DomTree, Alloc);
updateLiveIns(0, Indexes);
}
VNInfo *LiveRangeCalc::findReachingDefs(LiveInterval *LI,
MachineBasicBlock *KillMBB,
SlotIndex Kill,
SlotIndexes *Indexes,
MachineDominatorTree *DomTree) {
// Blocks where LI should be live-in.
SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
// Remember if we have seen more than one value.
bool UniqueVNI = true;
VNInfo *TheVNI = 0;
// Using Seen as a visited set, perform a BFS for all reaching defs.
for (unsigned i = 0; i != WorkList.size(); ++i) {
MachineBasicBlock *MBB = WorkList[i];
assert(!MBB->pred_empty() && "Value live-in to entry block?");
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
// Is this a known live-out block?
if (Seen.test(Pred->getNumber())) {
if (VNInfo *VNI = LiveOut[Pred].first) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
}
continue;
}
SlotIndex Start, End;
tie(Start, End) = Indexes->getMBBRange(Pred);
// First time we see Pred. Try to determine the live-out value, but set
// it as null if Pred is live-through with an unknown value.
VNInfo *VNI = LI->extendInBlock(Start, End.getPrevSlot());
setLiveOutValue(Pred, VNI);
if (VNI) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
continue;
}
// No, we need a live-in value for Pred as well
if (Pred != KillMBB)
WorkList.push_back(Pred);
else
// Loopback to KillMBB, so value is really live through.
Kill = SlotIndex();
}
}
// Transfer WorkList to LiveInBlocks in reverse order.
// This ordering works best with updateSSA().
LiveIn.clear();
LiveIn.reserve(WorkList.size());
while(!WorkList.empty())
addLiveInBlock(LI, DomTree->getNode(WorkList.pop_back_val()));
// The kill block may not be live-through.
assert(LiveIn.back().DomNode->getBlock() == KillMBB);
LiveIn.back().Kill = Kill;
return UniqueVNI ? TheVNI : 0;
}
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
void LiveRangeCalc::updateSSA(SlotIndexes *Indexes,
MachineDominatorTree *DomTree,
VNInfo::Allocator *Alloc) {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
// Interate until convergence.
unsigned Changes;
do {
Changes = 0;
// Propagate live-out values down the dominator tree, inserting phi-defs
// when necessary.
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
E = LiveIn.end(); I != E; ++I) {
MachineDomTreeNode *Node = I->DomNode;
// Skip block if the live-in value has already been determined.
if (!Node)
continue;
MachineBasicBlock *MBB = Node->getBlock();
MachineDomTreeNode *IDom = Node->getIDom();
LiveOutPair IDomValue;
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
// IDom dominates all of our predecessors, but it may not be their
// immediate dominator. Check if any of them have live-out values that are
// properly dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
IDomValue = LiveOut[IDom->getBlock()];
// Cache the DomTree node that defined the value.
if (IDomValue.first && !IDomValue.second)
LiveOut[IDom->getBlock()].second = IDomValue.second =
DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair &Value = LiveOut[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
// Cache the DomTree node that defined the value.
if (!Value.second)
Value.second =
DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
// This predecessor is carrying something other than IDomValue.
// It could be because IDomValue hasn't propagated yet, or it could be
// because MBB is in the dominance frontier of that value.
if (DomTree->dominates(IDom, Value.second)) {
needPHI = true;
break;
}
}
}
// The value may be live-through even if Kill is set, as can happen when
// we are called from extendRange. In that case LiveOutSeen is true, and
// LiveOut indicates a foreign or missing value.
LiveOutPair &LOP = LiveOut[MBB];
// Create a phi-def if required.
if (needPHI) {
++Changes;
assert(Alloc && "Need VNInfo allocator to create PHI-defs");
SlotIndex Start, End;
tie(Start, End) = Indexes->getMBBRange(MBB);
VNInfo *VNI = I->LI->getNextValue(Start, 0, *Alloc);
VNI->setIsPHIDef(true);
I->Value = VNI;
// This block is done, we know the final value.
I->DomNode = 0;
// Add liveness since updateLiveIns now skips this node.
if (I->Kill.isValid())
I->LI->addRange(LiveRange(Start, I->Kill, VNI));
else {
I->LI->addRange(LiveRange(Start, End, VNI));
LOP = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
// No phi-def here. Remember incoming value.
I->Value = IDomValue.first;
// If the IDomValue is killed in the block, don't propagate through.
if (I->Kill.isValid())
continue;
// Propagate IDomValue if it isn't killed:
// MBB is live-out and doesn't define its own value.
if (LOP.first == IDomValue.first)
continue;
++Changes;
LOP = IDomValue;
}
}
} while (Changes);
}

226
lib/CodeGen/LiveRangeCalc.h Normal file
View File

@ -0,0 +1,226 @@
//===---- LiveRangeCalc.h - Calculate live ranges ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeCalc class can be used to compute live ranges from scratch. It
// caches information about values in the CFG to speed up repeated operations
// on the same live range. The cache can be shared by non-overlapping live
// ranges. SplitKit uses that when computing the live range of split products.
//
// A low-level interface is available to clients that know where a variable is
// live, but don't know which value it has as every point. LiveRangeCalc will
// propagate values down the dominator tree, and even insert PHI-defs where
// needed. SplitKit uses this faster interface when possible.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVERANGECALC_H
#define LLVM_CODEGEN_LIVERANGECALC_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/CodeGen/LiveInterval.h"
namespace llvm {
/// Forward declarations for MachineDominators.h:
class MachineDominatorTree;
template <class NodeT> class DomTreeNodeBase;
typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
class LiveRangeCalc {
/// Seen - Bit vector of active entries in LiveOut, also used as a visited
/// set by findReachingDefs. One entry per basic block, indexed by block
/// number. This is kept as a separate bit vector because it can be cleared
/// quickly when switching live ranges.
BitVector Seen;
/// LiveOutPair - A value and the block that defined it. The domtree node is
/// redundant, it can be computed as: MDT[Indexes.getMBBFromIndex(VNI->def)].
typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair;
/// LiveOutMap - Map basic blocks to the value leaving the block.
typedef IndexedMap<LiveOutPair, MBB2NumberFunctor> LiveOutMap;
/// LiveOut - Map each basic block where a live range is live out to the
/// live-out value and its defining block.
///
/// For every basic block, MBB, one of these conditions shall be true:
///
/// 1. !Seen.count(MBB->getNumber())
/// Blocks without a Seen bit are ignored.
/// 2. LiveOut[MBB].second.getNode() == MBB
/// The live-out value is defined in MBB.
/// 3. forall P in preds(MBB): LiveOut[P] == LiveOut[MBB]
/// The live-out value passses through MBB. All predecessors must carry
/// the same value.
///
/// The domtree node may be null, it can be computed.
///
/// The map can be shared by multiple live ranges as long as no two are
/// live-out of the same block.
LiveOutMap LiveOut;
/// LiveInBlock - Information about a basic block where a live range is known
/// to be live-in, but the value has not yet been determined.
struct LiveInBlock {
// LI - The live range that is live-in to this block. The algorithms can
// handle multiple non-overlapping live ranges simultaneously.
LiveInterval *LI;
// DomNode - Dominator tree node for the block.
// Cleared when the final value has been determined and LI has been updated.
MachineDomTreeNode *DomNode;
// Position in block where the live-in range ends, or SlotIndex() if the
// range passes through the block. When the final value has been
// determined, the range from the block start to Kill will be added to LI.
SlotIndex Kill;
// Live-in value filled in by updateSSA once it is known.
VNInfo *Value;
LiveInBlock(LiveInterval *li, MachineDomTreeNode *node, SlotIndex kill)
: LI(li), DomNode(node), Kill(kill), Value(0) {}
};
/// LiveIn - Work list of blocks where the live-in value has yet to be
/// determined. This list is typically computed by findReachingDefs() and
/// used as a work list by updateSSA(). The low-level interface may also be
/// used to add entries directly.
SmallVector<LiveInBlock, 16> LiveIn;
/// findReachingDefs - Assuming that LI is live-in to KillMBB and killed at
/// Kill, search for values that can reach KillMBB. All blocks that need LI
/// to be live-in are added to LiveIn. If a unique reaching def is found,
/// its value is returned, if Kill is jointly dominated by multiple values,
/// NULL is returned.
VNInfo *findReachingDefs(LiveInterval *LI,
MachineBasicBlock *KillMBB,
SlotIndex Kill,
SlotIndexes *Indexes,
MachineDominatorTree *DomTree);
/// updateSSA - Compute the values that will be live in to all requested
/// blocks in LiveIn. Create PHI-def values as required to preserve SSA form.
///
/// Every live-in block must be jointly dominated by the added live-out
/// blocks. No values are read from the live ranges.
void updateSSA(SlotIndexes *Indexes,
MachineDominatorTree *DomTree,
VNInfo::Allocator *Alloc);
/// updateLiveIns - Add liveness as specified in the LiveIn vector, using VNI
/// as a wildcard value for LiveIn entries without a value.
void updateLiveIns(VNInfo *VNI, SlotIndexes*);
public:
//===--------------------------------------------------------------------===//
// High-level interface.
//===--------------------------------------------------------------------===//
//
// Calculate live ranges from scratch.
//
/// reset - Prepare caches for a new set of non-overlapping live ranges. The
/// caches must be reset before attempting calculations with a live range
/// that may overlap a previously computed live range, and before the first
/// live range in a function. If live ranges are not known to be
/// non-overlapping, call reset before each.
void reset(const MachineFunction *MF);
/// calculate - Calculate the live range of a virtual register from its defs
/// and uses. LI must be empty with no values.
void calculate(LiveInterval *LI,
MachineRegisterInfo *MRI,
SlotIndexes *Indexes,
VNInfo::Allocator *Alloc);
//===--------------------------------------------------------------------===//
// Mid-level interface.
//===--------------------------------------------------------------------===//
//
// Modify existing live ranges.
//
/// extend - Extend the live range of LI to reach Kill.
///
/// The existing values in LI must be live so they jointly dominate Kill. If
/// Kill is not dominated by a single existing value, PHI-defs are inserted
/// as required to preserve SSA form. If Kill is known to be dominated by a
/// single existing value, Alloc may be null.
void extend(LiveInterval *LI,
SlotIndex Kill,
SlotIndexes *Indexes,
MachineDominatorTree *DomTree,
VNInfo::Allocator *Alloc);
/// extendToUses - Extend the live range of LI to reach all uses.
///
/// All uses must be jointly dominated by existing liveness. PHI-defs are
/// inserted as needed to preserve SSA form.
void extendToUses(LiveInterval *LI,
MachineRegisterInfo *MRI,
SlotIndexes *Indexes,
MachineDominatorTree *DomTree,
VNInfo::Allocator *Alloc);
//===--------------------------------------------------------------------===//
// Low-level interface.
//===--------------------------------------------------------------------===//
//
// These functions can be used to compute live ranges where the live-in and
// live-out blocks are already known, but the SSA value in each block is
// unknown.
//
// After calling reset(), add known live-out values and known live-in blocks.
// Then call calculateValues() to compute the actual value that is
// live-in to each block, and add liveness to the live ranges.
//
/// setLiveOutValue - Indicate that VNI is live out from MBB. The
/// calculateValues() function will not add liveness for MBB, the caller
/// should take care of that.
///
/// VNI may be null only if MBB is a live-through block also passed to
/// addLiveInBlock().
void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI) {
Seen.set(MBB->getNumber());
LiveOut[MBB] = LiveOutPair(VNI, 0);
}
/// addLiveInBlock - Add a block with an unknown live-in value. This
/// function can only be called once per basic block. Once the live-in value
/// has been determined, calculateValues() will add liveness to LI.
///
/// @param LI The live range that is live-in to the block.
/// @param DomNode The domtree node for the block.
/// @param Kill Index in block where LI is killed. If the value is
/// live-through, set Kill = SLotIndex() and also call
/// setLiveOutValue(MBB, 0).
void addLiveInBlock(LiveInterval *LI,
MachineDomTreeNode *DomNode,
SlotIndex Kill = SlotIndex()) {
LiveIn.push_back(LiveInBlock(LI, DomNode, Kill));
}
/// calculateValues - Calculate the value that will be live-in to each block
/// added with addLiveInBlock. Add PHI-def values as needed to preserve SSA
/// form. Add liveness to all live-in blocks up to the Kill point, or the
/// whole block for live-through blocks.
///
/// Every predecessor of a live-in block must have been given a value with
/// setLiveOutValue, the value may be null for live-trough blocks.
void calculateValues(SlotIndexes *Indexes,
MachineDominatorTree *DomTree,
VNInfo::Allocator *Alloc);
};
} // end namespace llvm
#endif

View File

@ -319,9 +319,7 @@ void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
OpenIdx = 0;
RegAssign.clear();
Values.clear();
// We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
LiveOutSeen.clear();
LRCalc.reset(&VRM.getMachineFunction());
// We don't need an AliasAnalysis since we will only be performing
// cheap-as-a-copy remats anyway.
@ -392,212 +390,8 @@ void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
// extendRange - Extend the live range to reach Idx.
// Potentially create phi-def values.
void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
assert(Idx.isValid() && "Invalid SlotIndex");
MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
assert(IdxMBB && "No MBB at Idx");
LiveInterval *LI = Edit->get(RegIdx);
// Is there a def in the same MBB we can extend?
if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
return;
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
// Perform a search for all predecessor blocks where we know the dominating
// VNInfo.
VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
// When there were multiple different values, we may need new PHIs.
if (!VNI)
return updateSSA();
// Poor man's SSA update for the single-value case.
LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
E = LiveInBlocks.end(); I != E; ++I) {
MachineBasicBlock *MBB = I->DomNode->getBlock();
SlotIndex Start = LIS.getMBBStartIdx(MBB);
if (I->Kill.isValid())
LI->addRange(LiveRange(Start, I->Kill, VNI));
else {
LiveOutCache[MBB] = LOP;
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
}
}
}
/// findReachingDefs - Search the CFG for known live-out values.
/// Add required live-in blocks to LiveInBlocks.
VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
MachineBasicBlock *KillMBB,
SlotIndex Kill) {
// Initialize the live-out cache the first time it is needed.
if (LiveOutSeen.empty()) {
unsigned N = VRM.getMachineFunction().getNumBlockIDs();
LiveOutSeen.resize(N);
LiveOutCache.resize(N);
}
// Blocks where LI should be live-in.
SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
// Remember if we have seen more than one value.
bool UniqueVNI = true;
VNInfo *TheVNI = 0;
// Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
for (unsigned i = 0; i != WorkList.size(); ++i) {
MachineBasicBlock *MBB = WorkList[i];
assert(!MBB->pred_empty() && "Value live-in to entry block?");
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
LiveOutPair &LOP = LiveOutCache[Pred];
// Is this a known live-out block?
if (LiveOutSeen.test(Pred->getNumber())) {
if (VNInfo *VNI = LOP.first) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
}
continue;
}
// First time. LOP is garbage and must be cleared below.
LiveOutSeen.set(Pred->getNumber());
// Does Pred provide a live-out value?
SlotIndex Start, Last;
tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
Last = Last.getPrevSlot();
VNInfo *VNI = LI->extendInBlock(Start, Last);
LOP.first = VNI;
if (VNI) {
LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
continue;
}
LOP.second = 0;
// No, we need a live-in value for Pred as well
if (Pred != KillMBB)
WorkList.push_back(Pred);
else
// Loopback to KillMBB, so value is really live through.
Kill = SlotIndex();
}
}
// Transfer WorkList to LiveInBlocks in reverse order.
// This ordering works best with updateSSA().
LiveInBlocks.clear();
LiveInBlocks.reserve(WorkList.size());
while(!WorkList.empty())
LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
// The kill block may not be live-through.
assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
LiveInBlocks.back().Kill = Kill;
return UniqueVNI ? TheVNI : 0;
}
void SplitEditor::updateSSA() {
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
unsigned Changes;
do {
Changes = 0;
// Propagate live-out values down the dominator tree, inserting phi-defs
// when necessary.
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
E = LiveInBlocks.end(); I != E; ++I) {
MachineDomTreeNode *Node = I->DomNode;
// Skip block if the live-in value has already been determined.
if (!Node)
continue;
MachineBasicBlock *MBB = Node->getBlock();
MachineDomTreeNode *IDom = Node->getIDom();
LiveOutPair IDomValue;
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
// IDom dominates all of our predecessors, but it may not be their
// immediate dominator. Check if any of them have live-out values that are
// properly dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
IDomValue = LiveOutCache[IDom->getBlock()];
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair Value = LiveOutCache[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
// This predecessor is carrying something other than IDomValue.
// It could be because IDomValue hasn't propagated yet, or it could be
// because MBB is in the dominance frontier of that value.
if (MDT.dominates(IDom, Value.second)) {
needPHI = true;
break;
}
}
}
// The value may be live-through even if Kill is set, as can happen when
// we are called from extendRange. In that case LiveOutSeen is true, and
// LiveOutCache indicates a foreign or missing value.
LiveOutPair &LOP = LiveOutCache[MBB];
// Create a phi-def if required.
if (needPHI) {
++Changes;
SlotIndex Start = LIS.getMBBStartIdx(MBB);
unsigned RegIdx = RegAssign.lookup(Start);
LiveInterval *LI = Edit->get(RegIdx);
VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
VNI->setIsPHIDef(true);
I->Value = VNI;
// This block is done, we know the final value.
I->DomNode = 0;
if (I->Kill.isValid())
LI->addRange(LiveRange(Start, I->Kill, VNI));
else {
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
LOP = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
// No phi-def here. Remember incoming value.
I->Value = IDomValue.first;
if (I->Kill.isValid())
continue;
// Propagate IDomValue if needed:
// MBB is live-out and doesn't define its own value.
if (LOP.second != Node && LOP.first != IDomValue.first) {
++Changes;
LOP = IDomValue;
}
}
}
} while (Changes);
// The values in LiveInBlocks are now accurate. No more phi-defs are needed
// for these blocks, so we can color the live ranges.
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
E = LiveInBlocks.end(); I != E; ++I) {
if (!I->DomNode)
continue;
assert(I->Value && "No live-in value found");
MachineBasicBlock *MBB = I->DomNode->getBlock();
SlotIndex Start = LIS.getMBBStartIdx(MBB);
unsigned RegIdx = RegAssign.lookup(Start);
LiveInterval *LI = Edit->get(RegIdx);
LI->addRange(LiveRange(Start, I->Kill.isValid() ?
I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
}
LRCalc.extend(Edit->get(RegIdx), Idx.getNextSlot(),
LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator());
}
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
@ -794,7 +588,6 @@ void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
/// Values that were rematerialized are left alone, they need extendRange().
bool SplitEditor::transferValues() {
bool Skipped = false;
LiveInBlocks.clear();
RegAssignMap::const_iterator AssignI = RegAssign.begin();
for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
@ -840,13 +633,6 @@ bool SplitEditor::transferValues() {
continue;
}
// Initialize the live-out cache the first time it is needed.
if (LiveOutSeen.empty()) {
unsigned N = VRM.getMachineFunction().getNumBlockIDs();
LiveOutSeen.resize(N);
LiveOutCache.resize(N);
}
// This value has multiple defs in RegIdx, but it wasn't rematerialized,
// so the live range is accurate. Add live-in blocks in [Start;End) to the
// LiveInBlocks.
@ -861,10 +647,9 @@ bool SplitEditor::transferValues() {
assert(VNI && "Missing def for complex mapped value");
DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
// MBB has its own def. Is it also live-out?
if (BlockEnd <= End) {
LiveOutSeen.set(MBB->getNumber());
LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
}
if (BlockEnd <= End)
LRCalc.setLiveOutValue(MBB, VNI);
// Skip to the next block for live-in.
++MBB;
BlockStart = BlockEnd;
@ -881,22 +666,17 @@ bool SplitEditor::transferValues() {
VNInfo *VNI = LI->extendInBlock(BlockStart,
std::min(BlockEnd, End).getPrevSlot());
assert(VNI && "Missing def for complex mapped parent PHI");
if (End >= BlockEnd) {
// Live-out as well.
LiveOutSeen.set(MBB->getNumber());
LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
}
if (End >= BlockEnd)
LRCalc.setLiveOutValue(MBB, VNI); // Live-out as well.
} else {
// This block needs a live-in value.
LiveInBlocks.push_back(MDT[MBB]);
// The last block covered may not be live-out.
// This block needs a live-in value. The last block covered may not
// be live-out.
if (End < BlockEnd)
LiveInBlocks.back().Kill = End;
LRCalc.addLiveInBlock(LI, MDT[MBB], End);
else {
// Live-out, but we need updateSSA to tell us the value.
LiveOutSeen.set(MBB->getNumber());
LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
(MachineDomTreeNode*)0);
// Live-through, and we don't know the value.
LRCalc.addLiveInBlock(LI, MDT[MBB]);
LRCalc.setLiveOutValue(MBB, 0);
}
}
BlockStart = BlockEnd;
@ -907,8 +687,7 @@ bool SplitEditor::transferValues() {
DEBUG(dbgs() << '\n');
}
if (!LiveInBlocks.empty())
updateSSA();
LRCalc.calculateValues(LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator());
return Skipped;
}

View File

@ -15,13 +15,11 @@
#ifndef LLVM_CODEGEN_SPLITKIT_H
#define LLVM_CODEGEN_SPLITKIT_H
#include "LiveRangeCalc.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/SlotIndexes.h"
namespace llvm {
@ -38,12 +36,6 @@ class VirtRegMap;
class VNInfo;
class raw_ostream;
/// At some point we should just include MachineDominators.h:
class MachineDominatorTree;
template <class NodeT> class DomTreeNodeBase;
typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
/// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting
/// opportunities.
class SplitAnalysis {
@ -281,54 +273,8 @@ private:
/// The new value has no live ranges anywhere.
ValueMap Values;
typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair;
typedef IndexedMap<LiveOutPair, MBB2NumberFunctor> LiveOutMap;
// LiveOutCache - Map each basic block where a new register is live out to the
// live-out value and its defining block.
// One of these conditions shall be true:
//
// 1. !LiveOutSeen.count(MBB->getNumber())
// 2. LiveOutCache[MBB].second.getNode() == MBB
// 3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB]
//
// This is only a cache, the values can be computed as:
//
// VNI = Edit.get(RegIdx)->getVNInfoAt(LIS.getMBBEndIdx(MBB))
// Node = mbt_[LIS.getMBBFromIndex(VNI->def)]
//
// The cache can be shared by all the new registers because at most one is
// live out of each block.
LiveOutMap LiveOutCache;
// LiveOutSeen - Indexed by MBB->getNumber(), a bit is set for each valid
// entry in LiveOutCache. This is also used as a visited set for
// findReachingDefs().
BitVector LiveOutSeen;
/// LiveInBlock - Info for updateSSA() about a block where a register is
/// live-in.
/// The updateSSA caller provides DomNode and Kill inside MBB, updateSSA()
/// adds the computed live-in value.
struct LiveInBlock {
// Dominator tree node for the block.
// Cleared by updateSSA when the final value has been determined.
MachineDomTreeNode *DomNode;
// Live-in value filled in by updateSSA once it is known.
VNInfo *Value;
// Position in block where the live-in range ends, or SlotIndex() if the
// range passes through the block.
SlotIndex Kill;
LiveInBlock(MachineDomTreeNode *node) : DomNode(node), Value(0) {}
};
/// LiveInBlocks - List of live-in blocks used by findReachingDefs() and
/// updateSSA(). This list is usually empty, it exists here to avoid frequent
/// reallocations.
SmallVector<LiveInBlock, 16> LiveInBlocks;
/// LRCalc - Cache for computing live ranges and SSA update.
LiveRangeCalc LRCalc;
/// defValue - define a value in RegIdx from ParentVNI at Idx.
/// Idx does not have to be ParentVNI->def, but it must be contained within
@ -353,19 +299,6 @@ private:
/// Insert PHIDefs as needed to preserve SSA form.
void extendRange(unsigned RegIdx, SlotIndex Idx);
/// findReachingDefs - Starting from MBB, add blocks to LiveInBlocks until all
/// reaching defs for LI are found.
/// @param LI Live interval whose value is needed.
/// @param MBB Block where LI should be live-in.
/// @param Kill Kill point in MBB.
/// @return Unique value seen, or NULL.
VNInfo *findReachingDefs(LiveInterval *LI, MachineBasicBlock *MBB,
SlotIndex Kill);
/// updateSSA - Compute and insert PHIDefs such that all blocks in
// LiveInBlocks get a known live-in value. Add live ranges to the blocks.
void updateSSA();
/// transferValues - Transfer values to the new ranges.
/// Return true if any ranges were skipped.
bool transferValues();