mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-03-13 08:35:46 +00:00
Split the SSE readme items out into their own README.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28400 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
2420d81247
commit
c11ab17a8e
662
lib/Target/X86/README-SSE.txt
Normal file
662
lib/Target/X86/README-SSE.txt
Normal file
@ -0,0 +1,662 @@
|
||||
//===---------------------------------------------------------------------===//
|
||||
// Random ideas for the X86 backend: SSE-specific stuff.
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
|
||||
other fast SSE modes.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Think about doing i64 math in SSE regs.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
This testcase should have no SSE instructions in it, and only one load from
|
||||
a constant pool:
|
||||
|
||||
double %test3(bool %B) {
|
||||
%C = select bool %B, double 123.412, double 523.01123123
|
||||
ret double %C
|
||||
}
|
||||
|
||||
Currently, the select is being lowered, which prevents the dag combiner from
|
||||
turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
|
||||
|
||||
The pattern isel got this one right.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction
|
||||
like this:
|
||||
|
||||
X += y
|
||||
|
||||
and the register allocator decides to spill X, it is cheaper to emit this as:
|
||||
|
||||
Y += [xslot]
|
||||
store Y -> [xslot]
|
||||
|
||||
than as:
|
||||
|
||||
tmp = [xslot]
|
||||
tmp += y
|
||||
store tmp -> [xslot]
|
||||
|
||||
..and this uses one fewer register (so this should be done at load folding
|
||||
time, not at spiller time). *Note* however that this can only be done
|
||||
if Y is dead. Here's a testcase:
|
||||
|
||||
%.str_3 = external global [15 x sbyte] ; <[15 x sbyte]*> [#uses=0]
|
||||
implementation ; Functions:
|
||||
declare void %printf(int, ...)
|
||||
void %main() {
|
||||
build_tree.exit:
|
||||
br label %no_exit.i7
|
||||
no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit
|
||||
%tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.34.i18, %no_exit.i7 ] ; <double> [#uses=1]
|
||||
%tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.28.i16, %no_exit.i7 ] ; <double> [#uses=1]
|
||||
%tmp.28.i16 = add double %tmp.0.0.0.i10, 0.000000e+00
|
||||
%tmp.34.i18 = add double %tmp.0.1.0.i9, 0.000000e+00
|
||||
br bool false, label %Compute_Tree.exit23, label %no_exit.i7
|
||||
Compute_Tree.exit23: ; preds = %no_exit.i7
|
||||
tail call void (int, ...)* %printf( int 0 )
|
||||
store double %tmp.34.i18, double* null
|
||||
ret void
|
||||
}
|
||||
|
||||
We currently emit:
|
||||
|
||||
.BBmain_1:
|
||||
xorpd %XMM1, %XMM1
|
||||
addsd %XMM0, %XMM1
|
||||
*** movsd %XMM2, QWORD PTR [%ESP + 8]
|
||||
*** addsd %XMM2, %XMM1
|
||||
*** movsd QWORD PTR [%ESP + 8], %XMM2
|
||||
jmp .BBmain_1 # no_exit.i7
|
||||
|
||||
This is a bugpoint reduced testcase, which is why the testcase doesn't make
|
||||
much sense (e.g. its an infinite loop). :)
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
SSE should implement 'select_cc' using 'emulated conditional moves' that use
|
||||
pcmp/pand/pandn/por to do a selection instead of a conditional branch:
|
||||
|
||||
double %X(double %Y, double %Z, double %A, double %B) {
|
||||
%C = setlt double %A, %B
|
||||
%z = add double %Z, 0.0 ;; select operand is not a load
|
||||
%D = select bool %C, double %Y, double %z
|
||||
ret double %D
|
||||
}
|
||||
|
||||
We currently emit:
|
||||
|
||||
_X:
|
||||
subl $12, %esp
|
||||
xorpd %xmm0, %xmm0
|
||||
addsd 24(%esp), %xmm0
|
||||
movsd 32(%esp), %xmm1
|
||||
movsd 16(%esp), %xmm2
|
||||
ucomisd 40(%esp), %xmm1
|
||||
jb LBB_X_2
|
||||
LBB_X_1:
|
||||
movsd %xmm0, %xmm2
|
||||
LBB_X_2:
|
||||
movsd %xmm2, (%esp)
|
||||
fldl (%esp)
|
||||
addl $12, %esp
|
||||
ret
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
It's not clear whether we should use pxor or xorps / xorpd to clear XMM
|
||||
registers. The choice may depend on subtarget information. We should do some
|
||||
more experiments on different x86 machines.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Currently the x86 codegen isn't very good at mixing SSE and FPStack
|
||||
code:
|
||||
|
||||
unsigned int foo(double x) { return x; }
|
||||
|
||||
foo:
|
||||
subl $20, %esp
|
||||
movsd 24(%esp), %xmm0
|
||||
movsd %xmm0, 8(%esp)
|
||||
fldl 8(%esp)
|
||||
fisttpll (%esp)
|
||||
movl (%esp), %eax
|
||||
addl $20, %esp
|
||||
ret
|
||||
|
||||
This will be solved when we go to a dynamic programming based isel.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Should generate min/max for stuff like:
|
||||
|
||||
void minf(float a, float b, float *X) {
|
||||
*X = a <= b ? a : b;
|
||||
}
|
||||
|
||||
Make use of floating point min / max instructions. Perhaps introduce ISD::FMIN
|
||||
and ISD::FMAX node types?
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
The first BB of this code:
|
||||
|
||||
declare bool %foo()
|
||||
int %bar() {
|
||||
%V = call bool %foo()
|
||||
br bool %V, label %T, label %F
|
||||
T:
|
||||
ret int 1
|
||||
F:
|
||||
call bool %foo()
|
||||
ret int 12
|
||||
}
|
||||
|
||||
compiles to:
|
||||
|
||||
_bar:
|
||||
subl $12, %esp
|
||||
call L_foo$stub
|
||||
xorb $1, %al
|
||||
testb %al, %al
|
||||
jne LBB_bar_2 # F
|
||||
|
||||
It would be better to emit "cmp %al, 1" than a xor and test.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
|
||||
feasible.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Teach the coalescer to commute 2-addr instructions, allowing us to eliminate
|
||||
the reg-reg copy in this example:
|
||||
|
||||
float foo(int *x, float *y, unsigned c) {
|
||||
float res = 0.0;
|
||||
unsigned i;
|
||||
for (i = 0; i < c; i++) {
|
||||
float xx = (float)x[i];
|
||||
xx = xx * y[i];
|
||||
xx += res;
|
||||
res = xx;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
LBB_foo_3: # no_exit
|
||||
cvtsi2ss %XMM0, DWORD PTR [%EDX + 4*%ESI]
|
||||
mulss %XMM0, DWORD PTR [%EAX + 4*%ESI]
|
||||
addss %XMM0, %XMM1
|
||||
inc %ESI
|
||||
cmp %ESI, %ECX
|
||||
**** movaps %XMM1, %XMM0
|
||||
jb LBB_foo_3 # no_exit
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Codegen:
|
||||
if (copysign(1.0, x) == copysign(1.0, y))
|
||||
into:
|
||||
if (x^y & mask)
|
||||
when using SSE.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
|
||||
of a v4sf value.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
|
||||
Perhaps use pxor / xorp* to clear a XMM register first?
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Better codegen for:
|
||||
|
||||
void f(float a, float b, vector float * out) { *out = (vector float){ a, 0.0, 0.0, b}; }
|
||||
void f(float a, float b, vector float * out) { *out = (vector float){ a, b, 0.0, 0}; }
|
||||
|
||||
For the later we generate:
|
||||
|
||||
_f:
|
||||
pxor %xmm0, %xmm0
|
||||
movss 8(%esp), %xmm1
|
||||
movaps %xmm0, %xmm2
|
||||
unpcklps %xmm1, %xmm2
|
||||
movss 4(%esp), %xmm1
|
||||
unpcklps %xmm0, %xmm1
|
||||
unpcklps %xmm2, %xmm1
|
||||
movl 12(%esp), %eax
|
||||
movaps %xmm1, (%eax)
|
||||
ret
|
||||
|
||||
This seems like it should use shufps, one for each of a & b.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
How to decide when to use the "floating point version" of logical ops? Here are
|
||||
some code fragments:
|
||||
|
||||
movaps LCPI5_5, %xmm2
|
||||
divps %xmm1, %xmm2
|
||||
mulps %xmm2, %xmm3
|
||||
mulps 8656(%ecx), %xmm3
|
||||
addps 8672(%ecx), %xmm3
|
||||
andps LCPI5_6, %xmm2
|
||||
andps LCPI5_1, %xmm3
|
||||
por %xmm2, %xmm3
|
||||
movdqa %xmm3, (%edi)
|
||||
|
||||
movaps LCPI5_5, %xmm1
|
||||
divps %xmm0, %xmm1
|
||||
mulps %xmm1, %xmm3
|
||||
mulps 8656(%ecx), %xmm3
|
||||
addps 8672(%ecx), %xmm3
|
||||
andps LCPI5_6, %xmm1
|
||||
andps LCPI5_1, %xmm3
|
||||
orps %xmm1, %xmm3
|
||||
movaps %xmm3, 112(%esp)
|
||||
movaps %xmm3, (%ebx)
|
||||
|
||||
Due to some minor source change, the later case ended up using orps and movaps
|
||||
instead of por and movdqa. Does it matter?
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Use movddup to splat a v2f64 directly from a memory source. e.g.
|
||||
|
||||
#include <emmintrin.h>
|
||||
|
||||
void test(__m128d *r, double A) {
|
||||
*r = _mm_set1_pd(A);
|
||||
}
|
||||
|
||||
llc:
|
||||
|
||||
_test:
|
||||
movsd 8(%esp), %xmm0
|
||||
unpcklpd %xmm0, %xmm0
|
||||
movl 4(%esp), %eax
|
||||
movapd %xmm0, (%eax)
|
||||
ret
|
||||
|
||||
icc:
|
||||
|
||||
_test:
|
||||
movl 4(%esp), %eax
|
||||
movddup 8(%esp), %xmm0
|
||||
movapd %xmm0, (%eax)
|
||||
ret
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
X86RegisterInfo::copyRegToReg() returns X86::MOVAPSrr for VR128. Is it possible
|
||||
to choose between movaps, movapd, and movdqa based on types of source and
|
||||
destination?
|
||||
|
||||
How about andps, andpd, and pand? Do we really care about the type of the packed
|
||||
elements? If not, why not always use the "ps" variants which are likely to be
|
||||
shorter.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
We are emitting bad code for this:
|
||||
|
||||
float %test(float* %V, int %I, int %D, float %V) {
|
||||
entry:
|
||||
%tmp = seteq int %D, 0
|
||||
br bool %tmp, label %cond_true, label %cond_false23
|
||||
|
||||
cond_true:
|
||||
%tmp3 = getelementptr float* %V, int %I
|
||||
%tmp = load float* %tmp3
|
||||
%tmp5 = setgt float %tmp, %V
|
||||
%tmp6 = tail call bool %llvm.isunordered.f32( float %tmp, float %V )
|
||||
%tmp7 = or bool %tmp5, %tmp6
|
||||
br bool %tmp7, label %UnifiedReturnBlock, label %cond_next
|
||||
|
||||
cond_next:
|
||||
%tmp10 = add int %I, 1
|
||||
%tmp12 = getelementptr float* %V, int %tmp10
|
||||
%tmp13 = load float* %tmp12
|
||||
%tmp15 = setle float %tmp13, %V
|
||||
%tmp16 = tail call bool %llvm.isunordered.f32( float %tmp13, float %V )
|
||||
%tmp17 = or bool %tmp15, %tmp16
|
||||
%retval = select bool %tmp17, float 0.000000e+00, float 1.000000e+00
|
||||
ret float %retval
|
||||
|
||||
cond_false23:
|
||||
%tmp28 = tail call float %foo( float* %V, int %I, int %D, float %V )
|
||||
ret float %tmp28
|
||||
|
||||
UnifiedReturnBlock: ; preds = %cond_true
|
||||
ret float 0.000000e+00
|
||||
}
|
||||
|
||||
declare bool %llvm.isunordered.f32(float, float)
|
||||
|
||||
declare float %foo(float*, int, int, float)
|
||||
|
||||
|
||||
It exposes a known load folding problem:
|
||||
|
||||
movss (%edx,%ecx,4), %xmm1
|
||||
ucomiss %xmm1, %xmm0
|
||||
|
||||
As well as this:
|
||||
|
||||
LBB_test_2: # cond_next
|
||||
movss LCPI1_0, %xmm2
|
||||
pxor %xmm3, %xmm3
|
||||
ucomiss %xmm0, %xmm1
|
||||
jbe LBB_test_6 # cond_next
|
||||
LBB_test_5: # cond_next
|
||||
movaps %xmm2, %xmm3
|
||||
LBB_test_6: # cond_next
|
||||
movss %xmm3, 40(%esp)
|
||||
flds 40(%esp)
|
||||
addl $44, %esp
|
||||
ret
|
||||
|
||||
Clearly it's unnecessary to clear %xmm3. It's also not clear why we are emitting
|
||||
three moves (movss, movaps, movss).
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
External test Nurbs exposed some problems. Look for
|
||||
__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
|
||||
emits:
|
||||
|
||||
movaps (%edx), %xmm2 #59.21
|
||||
movaps (%edx), %xmm5 #60.21
|
||||
movaps (%edx), %xmm4 #61.21
|
||||
movaps (%edx), %xmm3 #62.21
|
||||
movl 40(%ecx), %ebp #69.49
|
||||
shufps $0, %xmm2, %xmm5 #60.21
|
||||
movl 100(%esp), %ebx #69.20
|
||||
movl (%ebx), %edi #69.20
|
||||
imull %ebp, %edi #69.49
|
||||
addl (%eax), %edi #70.33
|
||||
shufps $85, %xmm2, %xmm4 #61.21
|
||||
shufps $170, %xmm2, %xmm3 #62.21
|
||||
shufps $255, %xmm2, %xmm2 #63.21
|
||||
lea (%ebp,%ebp,2), %ebx #69.49
|
||||
negl %ebx #69.49
|
||||
lea -3(%edi,%ebx), %ebx #70.33
|
||||
shll $4, %ebx #68.37
|
||||
addl 32(%ecx), %ebx #68.37
|
||||
testb $15, %bl #91.13
|
||||
jne L_B1.24 # Prob 5% #91.13
|
||||
|
||||
This is the llvm code after instruction scheduling:
|
||||
|
||||
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
||||
%reg1078 = MOV32ri -3
|
||||
%reg1079 = ADD32rm %reg1078, %reg1068, 1, %NOREG, 0
|
||||
%reg1037 = MOV32rm %reg1024, 1, %NOREG, 40
|
||||
%reg1080 = IMUL32rr %reg1079, %reg1037
|
||||
%reg1081 = MOV32rm %reg1058, 1, %NOREG, 0
|
||||
%reg1038 = LEA32r %reg1081, 1, %reg1080, -3
|
||||
%reg1036 = MOV32rm %reg1024, 1, %NOREG, 32
|
||||
%reg1082 = SHL32ri %reg1038, 4
|
||||
%reg1039 = ADD32rr %reg1036, %reg1082
|
||||
%reg1083 = MOVAPSrm %reg1059, 1, %NOREG, 0
|
||||
%reg1034 = SHUFPSrr %reg1083, %reg1083, 170
|
||||
%reg1032 = SHUFPSrr %reg1083, %reg1083, 0
|
||||
%reg1035 = SHUFPSrr %reg1083, %reg1083, 255
|
||||
%reg1033 = SHUFPSrr %reg1083, %reg1083, 85
|
||||
%reg1040 = MOV32rr %reg1039
|
||||
%reg1084 = AND32ri8 %reg1039, 15
|
||||
CMP32ri8 %reg1084, 0
|
||||
JE mbb<cond_next204,0xa914d30>
|
||||
|
||||
Still ok. After register allocation:
|
||||
|
||||
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
||||
%EAX = MOV32ri -3
|
||||
%EDX = MOV32rm <fi#3>, 1, %NOREG, 0
|
||||
ADD32rm %EAX<def&use>, %EDX, 1, %NOREG, 0
|
||||
%EDX = MOV32rm <fi#7>, 1, %NOREG, 0
|
||||
%EDX = MOV32rm %EDX, 1, %NOREG, 40
|
||||
IMUL32rr %EAX<def&use>, %EDX
|
||||
%ESI = MOV32rm <fi#5>, 1, %NOREG, 0
|
||||
%ESI = MOV32rm %ESI, 1, %NOREG, 0
|
||||
MOV32mr <fi#4>, 1, %NOREG, 0, %ESI
|
||||
%EAX = LEA32r %ESI, 1, %EAX, -3
|
||||
%ESI = MOV32rm <fi#7>, 1, %NOREG, 0
|
||||
%ESI = MOV32rm %ESI, 1, %NOREG, 32
|
||||
%EDI = MOV32rr %EAX
|
||||
SHL32ri %EDI<def&use>, 4
|
||||
ADD32rr %EDI<def&use>, %ESI
|
||||
%XMM0 = MOVAPSrm %ECX, 1, %NOREG, 0
|
||||
%XMM1 = MOVAPSrr %XMM0
|
||||
SHUFPSrr %XMM1<def&use>, %XMM1, 170
|
||||
%XMM2 = MOVAPSrr %XMM0
|
||||
SHUFPSrr %XMM2<def&use>, %XMM2, 0
|
||||
%XMM3 = MOVAPSrr %XMM0
|
||||
SHUFPSrr %XMM3<def&use>, %XMM3, 255
|
||||
SHUFPSrr %XMM0<def&use>, %XMM0, 85
|
||||
%EBX = MOV32rr %EDI
|
||||
AND32ri8 %EBX<def&use>, 15
|
||||
CMP32ri8 %EBX, 0
|
||||
JE mbb<cond_next204,0xa914d30>
|
||||
|
||||
This looks really bad. The problem is shufps is a destructive opcode. Since it
|
||||
appears as operand two in more than one shufps ops. It resulted in a number of
|
||||
copies. Note icc also suffers from the same problem. Either the instruction
|
||||
selector should select pshufd or The register allocator can made the two-address
|
||||
to three-address transformation.
|
||||
|
||||
It also exposes some other problems. See MOV32ri -3 and the spills.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25500
|
||||
|
||||
LLVM is producing bad code.
|
||||
|
||||
LBB_main_4: # cond_true44
|
||||
addps %xmm1, %xmm2
|
||||
subps %xmm3, %xmm2
|
||||
movaps (%ecx), %xmm4
|
||||
movaps %xmm2, %xmm1
|
||||
addps %xmm4, %xmm1
|
||||
addl $16, %ecx
|
||||
incl %edx
|
||||
cmpl $262144, %edx
|
||||
movaps %xmm3, %xmm2
|
||||
movaps %xmm4, %xmm3
|
||||
jne LBB_main_4 # cond_true44
|
||||
|
||||
There are two problems. 1) No need to two loop induction variables. We can
|
||||
compare against 262144 * 16. 2) Known register coalescer issue. We should
|
||||
be able eliminate one of the movaps:
|
||||
|
||||
addps %xmm2, %xmm1 <=== Commute!
|
||||
subps %xmm3, %xmm1
|
||||
movaps (%ecx), %xmm4
|
||||
movaps %xmm1, %xmm1 <=== Eliminate!
|
||||
addps %xmm4, %xmm1
|
||||
addl $16, %ecx
|
||||
incl %edx
|
||||
cmpl $262144, %edx
|
||||
movaps %xmm3, %xmm2
|
||||
movaps %xmm4, %xmm3
|
||||
jne LBB_main_4 # cond_true44
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Consider:
|
||||
|
||||
__m128 test(float a) {
|
||||
return _mm_set_ps(0.0, 0.0, 0.0, a*a);
|
||||
}
|
||||
|
||||
This compiles into:
|
||||
|
||||
movss 4(%esp), %xmm1
|
||||
mulss %xmm1, %xmm1
|
||||
xorps %xmm0, %xmm0
|
||||
movss %xmm1, %xmm0
|
||||
ret
|
||||
|
||||
Because mulss doesn't modify the top 3 elements, the top elements of
|
||||
xmm1 are already zero'd. We could compile this to:
|
||||
|
||||
movss 4(%esp), %xmm0
|
||||
mulss %xmm0, %xmm0
|
||||
ret
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Here's a sick and twisted idea. Consider code like this:
|
||||
|
||||
__m128 test(__m128 a) {
|
||||
float b = *(float*)&A;
|
||||
...
|
||||
return _mm_set_ps(0.0, 0.0, 0.0, b);
|
||||
}
|
||||
|
||||
This might compile to this code:
|
||||
|
||||
movaps c(%esp), %xmm1
|
||||
xorps %xmm0, %xmm0
|
||||
movss %xmm1, %xmm0
|
||||
ret
|
||||
|
||||
Now consider if the ... code caused xmm1 to get spilled. This might produce
|
||||
this code:
|
||||
|
||||
movaps c(%esp), %xmm1
|
||||
movaps %xmm1, c2(%esp)
|
||||
...
|
||||
|
||||
xorps %xmm0, %xmm0
|
||||
movaps c2(%esp), %xmm1
|
||||
movss %xmm1, %xmm0
|
||||
ret
|
||||
|
||||
However, since the reload is only used by these instructions, we could
|
||||
"fold" it into the uses, producing something like this:
|
||||
|
||||
movaps c(%esp), %xmm1
|
||||
movaps %xmm1, c2(%esp)
|
||||
...
|
||||
|
||||
movss c2(%esp), %xmm0
|
||||
ret
|
||||
|
||||
... saving two instructions.
|
||||
|
||||
The basic idea is that a reload from a spill slot, can, if only one 4-byte
|
||||
chunk is used, bring in 3 zeros the the one element instead of 4 elements.
|
||||
This can be used to simplify a variety of shuffle operations, where the
|
||||
elements are fixed zeros.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
For this:
|
||||
|
||||
#include <emmintrin.h>
|
||||
void test(__m128d *r, __m128d *A, double B) {
|
||||
*r = _mm_loadl_pd(*A, &B);
|
||||
}
|
||||
|
||||
We generates:
|
||||
|
||||
subl $12, %esp
|
||||
movsd 24(%esp), %xmm0
|
||||
movsd %xmm0, (%esp)
|
||||
movl 20(%esp), %eax
|
||||
movapd (%eax), %xmm0
|
||||
movlpd (%esp), %xmm0
|
||||
movl 16(%esp), %eax
|
||||
movapd %xmm0, (%eax)
|
||||
addl $12, %esp
|
||||
ret
|
||||
|
||||
icc generates:
|
||||
|
||||
movl 4(%esp), %edx #3.6
|
||||
movl 8(%esp), %eax #3.6
|
||||
movapd (%eax), %xmm0 #4.22
|
||||
movlpd 12(%esp), %xmm0 #4.8
|
||||
movapd %xmm0, (%edx) #4.3
|
||||
ret #5.1
|
||||
|
||||
So icc is smart enough to know that B is in memory so it doesn't load it and
|
||||
store it back to stack.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
__m128d test1( __m128d A, __m128d B) {
|
||||
return _mm_shuffle_pd(A, B, 0x3);
|
||||
}
|
||||
|
||||
compiles to
|
||||
|
||||
shufpd $3, %xmm1, %xmm0
|
||||
|
||||
Perhaps it's better to use unpckhpd instead?
|
||||
|
||||
unpckhpd %xmm1, %xmm0
|
||||
|
||||
Don't know if unpckhpd is faster. But it is shorter.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
This code generates ugly code, probably due to costs being off or something:
|
||||
|
||||
void %test(float* %P, <4 x float>* %P2 ) {
|
||||
%xFloat0.688 = load float* %P
|
||||
%loadVector37.712 = load <4 x float>* %P2
|
||||
%inFloat3.713 = insertelement <4 x float> %loadVector37.712, float 0.000000e+00, uint 3
|
||||
store <4 x float> %inFloat3.713, <4 x float>* %P2
|
||||
ret void
|
||||
}
|
||||
|
||||
Generates:
|
||||
|
||||
_test:
|
||||
pxor %xmm0, %xmm0
|
||||
movd %xmm0, %eax ;; EAX = 0!
|
||||
movl 8(%esp), %ecx
|
||||
movaps (%ecx), %xmm0
|
||||
pinsrw $6, %eax, %xmm0
|
||||
shrl $16, %eax ;; EAX = 0 again!
|
||||
pinsrw $7, %eax, %xmm0
|
||||
movaps %xmm0, (%ecx)
|
||||
ret
|
||||
|
||||
It would be better to generate:
|
||||
|
||||
_test:
|
||||
movl 8(%esp), %ecx
|
||||
movaps (%ecx), %xmm0
|
||||
xor %eax, %eax
|
||||
pinsrw $6, %eax, %xmm0
|
||||
pinsrw $7, %eax, %xmm0
|
||||
movaps %xmm0, (%ecx)
|
||||
ret
|
||||
|
||||
or use pxor (to make a zero vector) and shuffle (to insert it).
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Some useful information in the Apple Altivec / SSE Migration Guide:
|
||||
|
||||
http://developer.apple.com/documentation/Performance/Conceptual/
|
||||
Accelerate_sse_migration/index.html
|
||||
|
||||
e.g. SSE select using and, andnot, or. Various SSE compare translations.
|
@ -140,15 +140,6 @@ target specific hook.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
|
||||
other fast SSE modes.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Think about doing i64 math in SSE regs.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
The DAG Isel doesn't fold the loads into the adds in this testcase. The
|
||||
pattern selector does. This is because the chain value of the load gets
|
||||
selected first, and the loads aren't checking to see if they are only used by
|
||||
@ -194,74 +185,6 @@ better schedule. :)
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
This testcase should have no SSE instructions in it, and only one load from
|
||||
a constant pool:
|
||||
|
||||
double %test3(bool %B) {
|
||||
%C = select bool %B, double 123.412, double 523.01123123
|
||||
ret double %C
|
||||
}
|
||||
|
||||
Currently, the select is being lowered, which prevents the dag combiner from
|
||||
turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
|
||||
|
||||
The pattern isel got this one right.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction
|
||||
like this:
|
||||
|
||||
X += y
|
||||
|
||||
and the register allocator decides to spill X, it is cheaper to emit this as:
|
||||
|
||||
Y += [xslot]
|
||||
store Y -> [xslot]
|
||||
|
||||
than as:
|
||||
|
||||
tmp = [xslot]
|
||||
tmp += y
|
||||
store tmp -> [xslot]
|
||||
|
||||
..and this uses one fewer register (so this should be done at load folding
|
||||
time, not at spiller time). *Note* however that this can only be done
|
||||
if Y is dead. Here's a testcase:
|
||||
|
||||
%.str_3 = external global [15 x sbyte] ; <[15 x sbyte]*> [#uses=0]
|
||||
implementation ; Functions:
|
||||
declare void %printf(int, ...)
|
||||
void %main() {
|
||||
build_tree.exit:
|
||||
br label %no_exit.i7
|
||||
no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit
|
||||
%tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.34.i18, %no_exit.i7 ] ; <double> [#uses=1]
|
||||
%tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.28.i16, %no_exit.i7 ] ; <double> [#uses=1]
|
||||
%tmp.28.i16 = add double %tmp.0.0.0.i10, 0.000000e+00
|
||||
%tmp.34.i18 = add double %tmp.0.1.0.i9, 0.000000e+00
|
||||
br bool false, label %Compute_Tree.exit23, label %no_exit.i7
|
||||
Compute_Tree.exit23: ; preds = %no_exit.i7
|
||||
tail call void (int, ...)* %printf( int 0 )
|
||||
store double %tmp.34.i18, double* null
|
||||
ret void
|
||||
}
|
||||
|
||||
We currently emit:
|
||||
|
||||
.BBmain_1:
|
||||
xorpd %XMM1, %XMM1
|
||||
addsd %XMM0, %XMM1
|
||||
*** movsd %XMM2, QWORD PTR [%ESP + 8]
|
||||
*** addsd %XMM2, %XMM1
|
||||
*** movsd QWORD PTR [%ESP + 8], %XMM2
|
||||
jmp .BBmain_1 # no_exit.i7
|
||||
|
||||
This is a bugpoint reduced testcase, which is why the testcase doesn't make
|
||||
much sense (e.g. its an infinite loop). :)
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
In many cases, LLVM generates code like this:
|
||||
|
||||
_test:
|
||||
@ -316,36 +239,6 @@ which is smaller.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
SSE should implement 'select_cc' using 'emulated conditional moves' that use
|
||||
pcmp/pand/pandn/por to do a selection instead of a conditional branch:
|
||||
|
||||
double %X(double %Y, double %Z, double %A, double %B) {
|
||||
%C = setlt double %A, %B
|
||||
%z = add double %Z, 0.0 ;; select operand is not a load
|
||||
%D = select bool %C, double %Y, double %z
|
||||
ret double %D
|
||||
}
|
||||
|
||||
We currently emit:
|
||||
|
||||
_X:
|
||||
subl $12, %esp
|
||||
xorpd %xmm0, %xmm0
|
||||
addsd 24(%esp), %xmm0
|
||||
movsd 32(%esp), %xmm1
|
||||
movsd 16(%esp), %xmm2
|
||||
ucomisd 40(%esp), %xmm1
|
||||
jb LBB_X_2
|
||||
LBB_X_1:
|
||||
movsd %xmm0, %xmm2
|
||||
LBB_X_2:
|
||||
movsd %xmm2, (%esp)
|
||||
fldl (%esp)
|
||||
addl $12, %esp
|
||||
ret
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
We should generate bts/btr/etc instructions on targets where they are cheap or
|
||||
when codesize is important. e.g., for:
|
||||
|
||||
@ -375,12 +268,6 @@ when we can spare a register. It reduces code size.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
It's not clear whether we should use pxor or xorps / xorpd to clear XMM
|
||||
registers. The choice may depend on subtarget information. We should do some
|
||||
more experiments on different x86 machines.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
|
||||
get this:
|
||||
|
||||
@ -412,25 +299,6 @@ which is probably slower, but it's interesting at least :)
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Currently the x86 codegen isn't very good at mixing SSE and FPStack
|
||||
code:
|
||||
|
||||
unsigned int foo(double x) { return x; }
|
||||
|
||||
foo:
|
||||
subl $20, %esp
|
||||
movsd 24(%esp), %xmm0
|
||||
movsd %xmm0, 8(%esp)
|
||||
fldl 8(%esp)
|
||||
fisttpll (%esp)
|
||||
movl (%esp), %eax
|
||||
addl $20, %esp
|
||||
ret
|
||||
|
||||
This will be solved when we go to a dynamic programming based isel.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Should generate min/max for stuff like:
|
||||
|
||||
void minf(float a, float b, float *X) {
|
||||
@ -495,45 +363,6 @@ stores, TLB preheating, etc)
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
|
||||
feasible.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Teach the coalescer to commute 2-addr instructions, allowing us to eliminate
|
||||
the reg-reg copy in this example:
|
||||
|
||||
float foo(int *x, float *y, unsigned c) {
|
||||
float res = 0.0;
|
||||
unsigned i;
|
||||
for (i = 0; i < c; i++) {
|
||||
float xx = (float)x[i];
|
||||
xx = xx * y[i];
|
||||
xx += res;
|
||||
res = xx;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
LBB_foo_3: # no_exit
|
||||
cvtsi2ss %XMM0, DWORD PTR [%EDX + 4*%ESI]
|
||||
mulss %XMM0, DWORD PTR [%EAX + 4*%ESI]
|
||||
addss %XMM0, %XMM1
|
||||
inc %ESI
|
||||
cmp %ESI, %ECX
|
||||
**** movaps %XMM1, %XMM0
|
||||
jb LBB_foo_3 # no_exit
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Codegen:
|
||||
if (copysign(1.0, x) == copysign(1.0, y))
|
||||
into:
|
||||
if (x^y & mask)
|
||||
when using SSE.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Optimize this into something reasonable:
|
||||
x * copysign(1.0, y) * copysign(1.0, z)
|
||||
|
||||
@ -611,39 +440,6 @@ directly %esp[0] if there are no other uses.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
|
||||
of a v4sf value.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
|
||||
Perhaps use pxor / xorp* to clear a XMM register first?
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Better codegen for:
|
||||
|
||||
void f(float a, float b, vector float * out) { *out = (vector float){ a, 0.0, 0.0, b}; }
|
||||
void f(float a, float b, vector float * out) { *out = (vector float){ a, b, 0.0, 0}; }
|
||||
|
||||
For the later we generate:
|
||||
|
||||
_f:
|
||||
pxor %xmm0, %xmm0
|
||||
movss 8(%esp), %xmm1
|
||||
movaps %xmm0, %xmm2
|
||||
unpcklps %xmm1, %xmm2
|
||||
movss 4(%esp), %xmm1
|
||||
unpcklps %xmm0, %xmm1
|
||||
unpcklps %xmm2, %xmm1
|
||||
movl 12(%esp), %eax
|
||||
movaps %xmm1, (%eax)
|
||||
ret
|
||||
|
||||
This seems like it should use shufps, one for each of a & b.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Adding to the list of cmp / test poor codegen issues:
|
||||
|
||||
int test(__m128 *A, __m128 *B) {
|
||||
@ -676,327 +472,6 @@ We probably need some kind of target DAG combine hook to fix this.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
How to decide when to use the "floating point version" of logical ops? Here are
|
||||
some code fragments:
|
||||
|
||||
movaps LCPI5_5, %xmm2
|
||||
divps %xmm1, %xmm2
|
||||
mulps %xmm2, %xmm3
|
||||
mulps 8656(%ecx), %xmm3
|
||||
addps 8672(%ecx), %xmm3
|
||||
andps LCPI5_6, %xmm2
|
||||
andps LCPI5_1, %xmm3
|
||||
por %xmm2, %xmm3
|
||||
movdqa %xmm3, (%edi)
|
||||
|
||||
movaps LCPI5_5, %xmm1
|
||||
divps %xmm0, %xmm1
|
||||
mulps %xmm1, %xmm3
|
||||
mulps 8656(%ecx), %xmm3
|
||||
addps 8672(%ecx), %xmm3
|
||||
andps LCPI5_6, %xmm1
|
||||
andps LCPI5_1, %xmm3
|
||||
orps %xmm1, %xmm3
|
||||
movaps %xmm3, 112(%esp)
|
||||
movaps %xmm3, (%ebx)
|
||||
|
||||
Due to some minor source change, the later case ended up using orps and movaps
|
||||
instead of por and movdqa. Does it matter?
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Use movddup to splat a v2f64 directly from a memory source. e.g.
|
||||
|
||||
#include <emmintrin.h>
|
||||
|
||||
void test(__m128d *r, double A) {
|
||||
*r = _mm_set1_pd(A);
|
||||
}
|
||||
|
||||
llc:
|
||||
|
||||
_test:
|
||||
movsd 8(%esp), %xmm0
|
||||
unpcklpd %xmm0, %xmm0
|
||||
movl 4(%esp), %eax
|
||||
movapd %xmm0, (%eax)
|
||||
ret
|
||||
|
||||
icc:
|
||||
|
||||
_test:
|
||||
movl 4(%esp), %eax
|
||||
movddup 8(%esp), %xmm0
|
||||
movapd %xmm0, (%eax)
|
||||
ret
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
X86RegisterInfo::copyRegToReg() returns X86::MOVAPSrr for VR128. Is it possible
|
||||
to choose between movaps, movapd, and movdqa based on types of source and
|
||||
destination?
|
||||
|
||||
How about andps, andpd, and pand? Do we really care about the type of the packed
|
||||
elements? If not, why not always use the "ps" variants which are likely to be
|
||||
shorter.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
We are emitting bad code for this:
|
||||
|
||||
float %test(float* %V, int %I, int %D, float %V) {
|
||||
entry:
|
||||
%tmp = seteq int %D, 0
|
||||
br bool %tmp, label %cond_true, label %cond_false23
|
||||
|
||||
cond_true:
|
||||
%tmp3 = getelementptr float* %V, int %I
|
||||
%tmp = load float* %tmp3
|
||||
%tmp5 = setgt float %tmp, %V
|
||||
%tmp6 = tail call bool %llvm.isunordered.f32( float %tmp, float %V )
|
||||
%tmp7 = or bool %tmp5, %tmp6
|
||||
br bool %tmp7, label %UnifiedReturnBlock, label %cond_next
|
||||
|
||||
cond_next:
|
||||
%tmp10 = add int %I, 1
|
||||
%tmp12 = getelementptr float* %V, int %tmp10
|
||||
%tmp13 = load float* %tmp12
|
||||
%tmp15 = setle float %tmp13, %V
|
||||
%tmp16 = tail call bool %llvm.isunordered.f32( float %tmp13, float %V )
|
||||
%tmp17 = or bool %tmp15, %tmp16
|
||||
%retval = select bool %tmp17, float 0.000000e+00, float 1.000000e+00
|
||||
ret float %retval
|
||||
|
||||
cond_false23:
|
||||
%tmp28 = tail call float %foo( float* %V, int %I, int %D, float %V )
|
||||
ret float %tmp28
|
||||
|
||||
UnifiedReturnBlock: ; preds = %cond_true
|
||||
ret float 0.000000e+00
|
||||
}
|
||||
|
||||
declare bool %llvm.isunordered.f32(float, float)
|
||||
|
||||
declare float %foo(float*, int, int, float)
|
||||
|
||||
|
||||
It exposes a known load folding problem:
|
||||
|
||||
movss (%edx,%ecx,4), %xmm1
|
||||
ucomiss %xmm1, %xmm0
|
||||
|
||||
As well as this:
|
||||
|
||||
LBB_test_2: # cond_next
|
||||
movss LCPI1_0, %xmm2
|
||||
pxor %xmm3, %xmm3
|
||||
ucomiss %xmm0, %xmm1
|
||||
jbe LBB_test_6 # cond_next
|
||||
LBB_test_5: # cond_next
|
||||
movaps %xmm2, %xmm3
|
||||
LBB_test_6: # cond_next
|
||||
movss %xmm3, 40(%esp)
|
||||
flds 40(%esp)
|
||||
addl $44, %esp
|
||||
ret
|
||||
|
||||
Clearly it's unnecessary to clear %xmm3. It's also not clear why we are emitting
|
||||
three moves (movss, movaps, movss).
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
External test Nurbs exposed some problems. Look for
|
||||
__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
|
||||
emits:
|
||||
|
||||
movaps (%edx), %xmm2 #59.21
|
||||
movaps (%edx), %xmm5 #60.21
|
||||
movaps (%edx), %xmm4 #61.21
|
||||
movaps (%edx), %xmm3 #62.21
|
||||
movl 40(%ecx), %ebp #69.49
|
||||
shufps $0, %xmm2, %xmm5 #60.21
|
||||
movl 100(%esp), %ebx #69.20
|
||||
movl (%ebx), %edi #69.20
|
||||
imull %ebp, %edi #69.49
|
||||
addl (%eax), %edi #70.33
|
||||
shufps $85, %xmm2, %xmm4 #61.21
|
||||
shufps $170, %xmm2, %xmm3 #62.21
|
||||
shufps $255, %xmm2, %xmm2 #63.21
|
||||
lea (%ebp,%ebp,2), %ebx #69.49
|
||||
negl %ebx #69.49
|
||||
lea -3(%edi,%ebx), %ebx #70.33
|
||||
shll $4, %ebx #68.37
|
||||
addl 32(%ecx), %ebx #68.37
|
||||
testb $15, %bl #91.13
|
||||
jne L_B1.24 # Prob 5% #91.13
|
||||
|
||||
This is the llvm code after instruction scheduling:
|
||||
|
||||
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
||||
%reg1078 = MOV32ri -3
|
||||
%reg1079 = ADD32rm %reg1078, %reg1068, 1, %NOREG, 0
|
||||
%reg1037 = MOV32rm %reg1024, 1, %NOREG, 40
|
||||
%reg1080 = IMUL32rr %reg1079, %reg1037
|
||||
%reg1081 = MOV32rm %reg1058, 1, %NOREG, 0
|
||||
%reg1038 = LEA32r %reg1081, 1, %reg1080, -3
|
||||
%reg1036 = MOV32rm %reg1024, 1, %NOREG, 32
|
||||
%reg1082 = SHL32ri %reg1038, 4
|
||||
%reg1039 = ADD32rr %reg1036, %reg1082
|
||||
%reg1083 = MOVAPSrm %reg1059, 1, %NOREG, 0
|
||||
%reg1034 = SHUFPSrr %reg1083, %reg1083, 170
|
||||
%reg1032 = SHUFPSrr %reg1083, %reg1083, 0
|
||||
%reg1035 = SHUFPSrr %reg1083, %reg1083, 255
|
||||
%reg1033 = SHUFPSrr %reg1083, %reg1083, 85
|
||||
%reg1040 = MOV32rr %reg1039
|
||||
%reg1084 = AND32ri8 %reg1039, 15
|
||||
CMP32ri8 %reg1084, 0
|
||||
JE mbb<cond_next204,0xa914d30>
|
||||
|
||||
Still ok. After register allocation:
|
||||
|
||||
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
||||
%EAX = MOV32ri -3
|
||||
%EDX = MOV32rm <fi#3>, 1, %NOREG, 0
|
||||
ADD32rm %EAX<def&use>, %EDX, 1, %NOREG, 0
|
||||
%EDX = MOV32rm <fi#7>, 1, %NOREG, 0
|
||||
%EDX = MOV32rm %EDX, 1, %NOREG, 40
|
||||
IMUL32rr %EAX<def&use>, %EDX
|
||||
%ESI = MOV32rm <fi#5>, 1, %NOREG, 0
|
||||
%ESI = MOV32rm %ESI, 1, %NOREG, 0
|
||||
MOV32mr <fi#4>, 1, %NOREG, 0, %ESI
|
||||
%EAX = LEA32r %ESI, 1, %EAX, -3
|
||||
%ESI = MOV32rm <fi#7>, 1, %NOREG, 0
|
||||
%ESI = MOV32rm %ESI, 1, %NOREG, 32
|
||||
%EDI = MOV32rr %EAX
|
||||
SHL32ri %EDI<def&use>, 4
|
||||
ADD32rr %EDI<def&use>, %ESI
|
||||
%XMM0 = MOVAPSrm %ECX, 1, %NOREG, 0
|
||||
%XMM1 = MOVAPSrr %XMM0
|
||||
SHUFPSrr %XMM1<def&use>, %XMM1, 170
|
||||
%XMM2 = MOVAPSrr %XMM0
|
||||
SHUFPSrr %XMM2<def&use>, %XMM2, 0
|
||||
%XMM3 = MOVAPSrr %XMM0
|
||||
SHUFPSrr %XMM3<def&use>, %XMM3, 255
|
||||
SHUFPSrr %XMM0<def&use>, %XMM0, 85
|
||||
%EBX = MOV32rr %EDI
|
||||
AND32ri8 %EBX<def&use>, 15
|
||||
CMP32ri8 %EBX, 0
|
||||
JE mbb<cond_next204,0xa914d30>
|
||||
|
||||
This looks really bad. The problem is shufps is a destructive opcode. Since it
|
||||
appears as operand two in more than one shufps ops. It resulted in a number of
|
||||
copies. Note icc also suffers from the same problem. Either the instruction
|
||||
selector should select pshufd or The register allocator can made the two-address
|
||||
to three-address transformation.
|
||||
|
||||
It also exposes some other problems. See MOV32ri -3 and the spills.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25500
|
||||
|
||||
LLVM is producing bad code.
|
||||
|
||||
LBB_main_4: # cond_true44
|
||||
addps %xmm1, %xmm2
|
||||
subps %xmm3, %xmm2
|
||||
movaps (%ecx), %xmm4
|
||||
movaps %xmm2, %xmm1
|
||||
addps %xmm4, %xmm1
|
||||
addl $16, %ecx
|
||||
incl %edx
|
||||
cmpl $262144, %edx
|
||||
movaps %xmm3, %xmm2
|
||||
movaps %xmm4, %xmm3
|
||||
jne LBB_main_4 # cond_true44
|
||||
|
||||
There are two problems. 1) No need to two loop induction variables. We can
|
||||
compare against 262144 * 16. 2) Known register coalescer issue. We should
|
||||
be able eliminate one of the movaps:
|
||||
|
||||
addps %xmm2, %xmm1 <=== Commute!
|
||||
subps %xmm3, %xmm1
|
||||
movaps (%ecx), %xmm4
|
||||
movaps %xmm1, %xmm1 <=== Eliminate!
|
||||
addps %xmm4, %xmm1
|
||||
addl $16, %ecx
|
||||
incl %edx
|
||||
cmpl $262144, %edx
|
||||
movaps %xmm3, %xmm2
|
||||
movaps %xmm4, %xmm3
|
||||
jne LBB_main_4 # cond_true44
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Consider:
|
||||
|
||||
__m128 test(float a) {
|
||||
return _mm_set_ps(0.0, 0.0, 0.0, a*a);
|
||||
}
|
||||
|
||||
This compiles into:
|
||||
|
||||
movss 4(%esp), %xmm1
|
||||
mulss %xmm1, %xmm1
|
||||
xorps %xmm0, %xmm0
|
||||
movss %xmm1, %xmm0
|
||||
ret
|
||||
|
||||
Because mulss doesn't modify the top 3 elements, the top elements of
|
||||
xmm1 are already zero'd. We could compile this to:
|
||||
|
||||
movss 4(%esp), %xmm0
|
||||
mulss %xmm0, %xmm0
|
||||
ret
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Here's a sick and twisted idea. Consider code like this:
|
||||
|
||||
__m128 test(__m128 a) {
|
||||
float b = *(float*)&A;
|
||||
...
|
||||
return _mm_set_ps(0.0, 0.0, 0.0, b);
|
||||
}
|
||||
|
||||
This might compile to this code:
|
||||
|
||||
movaps c(%esp), %xmm1
|
||||
xorps %xmm0, %xmm0
|
||||
movss %xmm1, %xmm0
|
||||
ret
|
||||
|
||||
Now consider if the ... code caused xmm1 to get spilled. This might produce
|
||||
this code:
|
||||
|
||||
movaps c(%esp), %xmm1
|
||||
movaps %xmm1, c2(%esp)
|
||||
...
|
||||
|
||||
xorps %xmm0, %xmm0
|
||||
movaps c2(%esp), %xmm1
|
||||
movss %xmm1, %xmm0
|
||||
ret
|
||||
|
||||
However, since the reload is only used by these instructions, we could
|
||||
"fold" it into the uses, producing something like this:
|
||||
|
||||
movaps c(%esp), %xmm1
|
||||
movaps %xmm1, c2(%esp)
|
||||
...
|
||||
|
||||
movss c2(%esp), %xmm0
|
||||
ret
|
||||
|
||||
... saving two instructions.
|
||||
|
||||
The basic idea is that a reload from a spill slot, can, if only one 4-byte
|
||||
chunk is used, bring in 3 zeros the the one element instead of 4 elements.
|
||||
This can be used to simplify a variety of shuffle operations, where the
|
||||
elements are fixed zeros.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
We generate significantly worse code for this than GCC:
|
||||
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
|
||||
http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
|
||||
@ -1005,56 +480,6 @@ There is also one case we do worse on PPC.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
For this:
|
||||
|
||||
#include <emmintrin.h>
|
||||
void test(__m128d *r, __m128d *A, double B) {
|
||||
*r = _mm_loadl_pd(*A, &B);
|
||||
}
|
||||
|
||||
We generates:
|
||||
|
||||
subl $12, %esp
|
||||
movsd 24(%esp), %xmm0
|
||||
movsd %xmm0, (%esp)
|
||||
movl 20(%esp), %eax
|
||||
movapd (%eax), %xmm0
|
||||
movlpd (%esp), %xmm0
|
||||
movl 16(%esp), %eax
|
||||
movapd %xmm0, (%eax)
|
||||
addl $12, %esp
|
||||
ret
|
||||
|
||||
icc generates:
|
||||
|
||||
movl 4(%esp), %edx #3.6
|
||||
movl 8(%esp), %eax #3.6
|
||||
movapd (%eax), %xmm0 #4.22
|
||||
movlpd 12(%esp), %xmm0 #4.8
|
||||
movapd %xmm0, (%edx) #4.3
|
||||
ret #5.1
|
||||
|
||||
So icc is smart enough to know that B is in memory so it doesn't load it and
|
||||
store it back to stack.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
__m128d test1( __m128d A, __m128d B) {
|
||||
return _mm_shuffle_pd(A, B, 0x3);
|
||||
}
|
||||
|
||||
compiles to
|
||||
|
||||
shufpd $3, %xmm1, %xmm0
|
||||
|
||||
Perhaps it's better to use unpckhpd instead?
|
||||
|
||||
unpckhpd %xmm1, %xmm0
|
||||
|
||||
Don't know if unpckhpd is faster. But it is shorter.
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
If shorter, we should use things like:
|
||||
movzwl %ax, %eax
|
||||
instead of:
|
||||
@ -1114,10 +539,3 @@ _foo:
|
||||
ret
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
||||
Some useful information in the Apple Altivec / SSE Migration Guide:
|
||||
|
||||
http://developer.apple.com/documentation/Performance/Conceptual/
|
||||
Accelerate_sse_migration/index.html
|
||||
|
||||
e.g. SSE select using and, andnot, or. Various SSE compare translations.
|
||||
|
Loading…
x
Reference in New Issue
Block a user