Rename member variables to follow coding standards.

No functional change.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137094 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2011-08-09 01:01:27 +00:00
parent 54f1536927
commit c19e6dd64f
2 changed files with 232 additions and 231 deletions

View File

@ -78,14 +78,14 @@ VerifyCoalescing("verify-coalescing",
namespace {
class RegisterCoalescer : public MachineFunctionPass {
MachineFunction* mf_;
MachineRegisterInfo* mri_;
const TargetMachine* tm_;
const TargetRegisterInfo* tri_;
const TargetInstrInfo* tii_;
LiveIntervals *li_;
LiveDebugVariables *ldv_;
const MachineLoopInfo* loopInfo;
MachineFunction* MF;
MachineRegisterInfo* MRI;
const TargetMachine* TM;
const TargetRegisterInfo* TRI;
const TargetInstrInfo* TII;
LiveIntervals *LIS;
LiveDebugVariables *LDV;
const MachineLoopInfo* Loops;
AliasAnalysis *AA;
RegisterClassInfo RegClassInfo;
@ -240,14 +240,14 @@ static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
}
bool CoalescerPair::setRegisters(const MachineInstr *MI) {
srcReg_ = dstReg_ = subIdx_ = 0;
newRC_ = 0;
flipped_ = crossClass_ = false;
SrcReg = DstReg = SubIdx = 0;
NewRC = 0;
Flipped = CrossClass = false;
unsigned Src, Dst, SrcSub, DstSub;
if (!isMoveInstr(tri_, MI, Src, Dst, SrcSub, DstSub))
if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
return false;
partial_ = SrcSub || DstSub;
Partial = SrcSub || DstSub;
// If one register is a physreg, it must be Dst.
if (TargetRegisterInfo::isPhysicalRegister(Src)) {
@ -255,7 +255,7 @@ bool CoalescerPair::setRegisters(const MachineInstr *MI) {
return false;
std::swap(Src, Dst);
std::swap(SrcSub, DstSub);
flipped_ = true;
Flipped = true;
}
const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
@ -263,14 +263,14 @@ bool CoalescerPair::setRegisters(const MachineInstr *MI) {
if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
// Eliminate DstSub on a physreg.
if (DstSub) {
Dst = tri_.getSubReg(Dst, DstSub);
Dst = TRI.getSubReg(Dst, DstSub);
if (!Dst) return false;
DstSub = 0;
}
// Eliminate SrcSub by picking a corresponding Dst superregister.
if (SrcSub) {
Dst = tri_.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
if (!Dst) return false;
SrcSub = 0;
} else if (!MRI.getRegClass(Src)->contains(Dst)) {
@ -298,36 +298,36 @@ bool CoalescerPair::setRegisters(const MachineInstr *MI) {
std::swap(Src, Dst);
DstSub = SrcSub;
SrcSub = 0;
assert(!flipped_ && "Unexpected flip");
flipped_ = true;
assert(!Flipped && "Unexpected flip");
Flipped = true;
}
// Find the new register class.
const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
if (DstSub)
newRC_ = tri_.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
else
newRC_ = getCommonSubClass(DstRC, SrcRC);
if (!newRC_)
NewRC = getCommonSubClass(DstRC, SrcRC);
if (!NewRC)
return false;
crossClass_ = newRC_ != DstRC || newRC_ != SrcRC;
CrossClass = NewRC != DstRC || NewRC != SrcRC;
}
// Check our invariants
assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
"Cannot have a physical SubIdx");
srcReg_ = Src;
dstReg_ = Dst;
subIdx_ = DstSub;
SrcReg = Src;
DstReg = Dst;
SubIdx = DstSub;
return true;
}
bool CoalescerPair::flip() {
if (subIdx_ || TargetRegisterInfo::isPhysicalRegister(dstReg_))
if (SubIdx || TargetRegisterInfo::isPhysicalRegister(DstReg))
return false;
std::swap(srcReg_, dstReg_);
flipped_ = !flipped_;
std::swap(SrcReg, DstReg);
Flipped = !Flipped;
return true;
}
@ -335,36 +335,36 @@ bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
if (!MI)
return false;
unsigned Src, Dst, SrcSub, DstSub;
if (!isMoveInstr(tri_, MI, Src, Dst, SrcSub, DstSub))
if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
return false;
// Find the virtual register that is srcReg_.
if (Dst == srcReg_) {
// Find the virtual register that is SrcReg.
if (Dst == SrcReg) {
std::swap(Src, Dst);
std::swap(SrcSub, DstSub);
} else if (Src != srcReg_) {
} else if (Src != SrcReg) {
return false;
}
// Now check that Dst matches dstReg_.
if (TargetRegisterInfo::isPhysicalRegister(dstReg_)) {
// Now check that Dst matches DstReg.
if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
if (!TargetRegisterInfo::isPhysicalRegister(Dst))
return false;
assert(!subIdx_ && "Inconsistent CoalescerPair state.");
assert(!SubIdx && "Inconsistent CoalescerPair state.");
// DstSub could be set for a physreg from INSERT_SUBREG.
if (DstSub)
Dst = tri_.getSubReg(Dst, DstSub);
Dst = TRI.getSubReg(Dst, DstSub);
// Full copy of Src.
if (!SrcSub)
return dstReg_ == Dst;
return DstReg == Dst;
// This is a partial register copy. Check that the parts match.
return tri_.getSubReg(dstReg_, SrcSub) == Dst;
return TRI.getSubReg(DstReg, SrcSub) == Dst;
} else {
// dstReg_ is virtual.
if (dstReg_ != Dst)
// DstReg is virtual.
if (DstReg != Dst)
return false;
// Registers match, do the subregisters line up?
return compose(tri_, subIdx_, SrcSub) == DstSub;
return compose(TRI, SubIdx, SrcSub) == DstSub;
}
}
@ -416,14 +416,14 @@ bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
MachineInstr *CopyMI) {
// Bail if there is no dst interval - can happen when merging physical subreg
// operations.
if (!li_->hasInterval(CP.getDstReg()))
if (!LIS->hasInterval(CP.getDstReg()))
return false;
LiveInterval &IntA =
li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getDefIndex();
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
// the example above.
@ -479,7 +479,7 @@ bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
// Make sure that the end of the live range is inside the same block as
// CopyMI.
MachineInstr *ValLREndInst =
li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
return false;
@ -492,11 +492,11 @@ bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
// of its aliases is overlapping the live interval of the virtual register.
// If so, do not coalesce.
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
if (li_->hasInterval(*AS) && IntA.overlaps(li_->getInterval(*AS))) {
for (const unsigned *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
DEBUG({
dbgs() << "\t\tInterfere with alias ";
li_->getInterval(*AS).print(dbgs(), tri_);
LIS->getInterval(*AS).print(dbgs(), TRI);
});
return false;
}
@ -504,7 +504,7 @@ bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
DEBUG({
dbgs() << "Extending: ";
IntB.print(dbgs(), tri_);
IntB.print(dbgs(), TRI);
});
SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
@ -522,13 +522,13 @@ bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
// If the IntB live range is assigned to a physical register, and if that
// physreg has sub-registers, update their live intervals as well.
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
if (!li_->hasInterval(*SR))
for (const unsigned *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
if (!LIS->hasInterval(*SR))
continue;
LiveInterval &SRLI = li_->getInterval(*SR);
LiveInterval &SRLI = LIS->getInterval(*SR);
SRLI.addRange(LiveRange(FillerStart, FillerEnd,
SRLI.getNextValue(FillerStart, 0,
li_->getVNInfoAllocator())));
LIS->getVNInfoAllocator())));
}
}
@ -543,7 +543,7 @@ bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
}
DEBUG({
dbgs() << " result = ";
IntB.print(dbgs(), tri_);
IntB.print(dbgs(), TRI);
dbgs() << "\n";
});
@ -558,7 +558,7 @@ bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
// merge, find the last use and trim the live range. That will also add the
// isKill marker.
if (ALR->end == CopyIdx)
li_->shrinkToUses(&IntA);
LIS->shrinkToUses(&IntA);
++numExtends;
return true;
@ -622,15 +622,15 @@ bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
return false;
// Bail if there is no dst interval.
if (!li_->hasInterval(CP.getDstReg()))
if (!LIS->hasInterval(CP.getDstReg()))
return false;
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getDefIndex();
LiveInterval &IntA =
li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
// the example above.
@ -648,7 +648,7 @@ bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
// the optimization.
if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
return false;
MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
if (!DefMI)
return false;
const MCInstrDesc &MCID = DefMI->getDesc();
@ -662,7 +662,7 @@ bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
return false;
unsigned Op1, Op2, NewDstIdx;
if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
return false;
if (Op1 == UseOpIdx)
NewDstIdx = Op2;
@ -684,18 +684,18 @@ bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
// Abort if the aliases of IntB.reg have values that are not simply the
// clobbers from the superreg.
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
if (li_->hasInterval(*AS) &&
HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
for (const unsigned *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
if (LIS->hasInterval(*AS) &&
HasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
return false;
// If some of the uses of IntA.reg is already coalesced away, return false.
// It's not possible to determine whether it's safe to perform the coalescing.
for (MachineRegisterInfo::use_nodbg_iterator UI =
mri_->use_nodbg_begin(IntA.reg),
UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
MRI->use_nodbg_begin(IntA.reg),
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
if (ULR == IntA.end())
continue;
@ -709,15 +709,15 @@ bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
// At this point we have decided that it is legal to do this
// transformation. Start by commuting the instruction.
MachineBasicBlock *MBB = DefMI->getParent();
MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
MachineInstr *NewMI = TII->commuteInstruction(DefMI);
if (!NewMI)
return false;
if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
!mri_->constrainRegClass(IntB.reg, mri_->getRegClass(IntA.reg)))
!MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
return false;
if (NewMI != DefMI) {
li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
MBB->insert(DefMI, NewMI);
MBB->erase(DefMI);
}
@ -734,8 +734,8 @@ bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
// = B
// Update uses of IntA of the specific Val# with IntB.
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
UE = mri_->use_end(); UI != UE;) {
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
UE = MRI->use_end(); UI != UE;) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = &*UI;
++UI;
@ -747,12 +747,12 @@ bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
UseMO.setReg(NewReg);
continue;
}
SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getUseIndex();
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
if (ULR == IntA.end() || ULR->valno != AValNo)
continue;
if (TargetRegisterInfo::isPhysicalRegister(NewReg))
UseMO.substPhysReg(NewReg, *tri_);
UseMO.substPhysReg(NewReg, *TRI);
else
UseMO.setReg(NewReg);
if (UseMI == CopyMI)
@ -800,7 +800,7 @@ bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
unsigned DstReg,
unsigned DstSubIdx,
MachineInstr *CopyMI) {
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getUseIndex();
LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
assert(SrcLR != SrcInt.end() && "Live range not found!");
VNInfo *ValNo = SrcLR->valno;
@ -808,17 +808,17 @@ bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
// the optimization.
if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
return false;
MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
if (!DefMI)
return false;
assert(DefMI && "Defining instruction disappeared");
const MCInstrDesc &MCID = DefMI->getDesc();
if (!MCID.isAsCheapAsAMove())
return false;
if (!tii_->isTriviallyReMaterializable(DefMI, AA))
if (!TII->isTriviallyReMaterializable(DefMI, AA))
return false;
bool SawStore = false;
if (!DefMI->isSafeToMove(tii_, AA, SawStore))
if (!DefMI->isSafeToMove(TII, AA, SawStore))
return false;
if (MCID.getNumDefs() != 1)
return false;
@ -826,9 +826,9 @@ bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
// Make sure the copy destination register class fits the instruction
// definition register class. The mismatch can happen as a result of earlier
// extract_subreg, insert_subreg, subreg_to_reg coalescing.
const TargetRegisterClass *RC = tii_->getRegClass(MCID, 0, tri_);
const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI);
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
if (mri_->getRegClass(DstReg) != RC)
if (MRI->getRegClass(DstReg) != RC)
return false;
} else if (!RC->contains(DstReg))
return false;
@ -840,10 +840,10 @@ bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
const MCInstrDesc &MCID = DefMI->getDesc();
if (MCID.getNumDefs() != 1)
return false;
const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
const TargetRegisterClass *DstSubRC =
DstRC->getSubRegisterRegClass(DstSubIdx);
const TargetRegisterClass *DefRC = tii_->getRegClass(MCID, 0, tri_);
const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI);
if (DefRC == DstRC)
DstSubIdx = 0;
else if (DefRC != DstSubRC)
@ -855,7 +855,7 @@ bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
MachineBasicBlock *MBB = CopyMI->getParent();
MachineBasicBlock::iterator MII =
llvm::next(MachineBasicBlock::iterator(CopyMI));
tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
TII->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *TRI);
MachineInstr *NewMI = prior(MII);
// CopyMI may have implicit operands, transfer them over to the newly
@ -870,7 +870,7 @@ bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
}
NewMI->copyImplicitOps(CopyMI);
li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
CopyMI->eraseFromParent();
ReMatCopies.insert(CopyMI);
ReMatDefs.insert(DefMI);
@ -879,7 +879,7 @@ bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
// The source interval can become smaller because we removed a use.
if (preserveSrcInt)
li_->shrinkToUses(&SrcInt);
LIS->shrinkToUses(&SrcInt);
return true;
}
@ -893,11 +893,11 @@ bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
/// Any uses of that value number are marked as <undef>.
bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
const CoalescerPair &CP) {
SlotIndex Idx = li_->getInstructionIndex(CopyMI);
LiveInterval *SrcInt = &li_->getInterval(CP.getSrcReg());
SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
if (SrcInt->liveAt(Idx))
return false;
LiveInterval *DstInt = &li_->getInterval(CP.getDstReg());
LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
if (DstInt->liveAt(Idx))
return false;
@ -912,13 +912,13 @@ bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
// Find new undef uses.
for (MachineRegisterInfo::reg_nodbg_iterator
I = mri_->reg_nodbg_begin(DstInt->reg), E = mri_->reg_nodbg_end();
I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
I != E; ++I) {
MachineOperand &MO = I.getOperand();
if (MO.isDef() || MO.isUndef())
continue;
MachineInstr *MI = MO.getParent();
SlotIndex Idx = li_->getInstructionIndex(MI);
SlotIndex Idx = LIS->getInstructionIndex(MI);
if (DstInt->liveAt(Idx))
continue;
MO.setIsUndef(true);
@ -940,9 +940,9 @@ RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
unsigned SubIdx = CP.getSubIdx();
// Update LiveDebugVariables.
ldv_->renameRegister(SrcReg, DstReg, SubIdx);
LDV->renameRegister(SrcReg, DstReg, SubIdx);
for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
MachineInstr *UseMI = I.skipInstruction();) {
// A PhysReg copy that won't be coalesced can perhaps be rematerialized
// instead.
@ -954,7 +954,7 @@ RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
UseMI->getOperand(0).getReg() != SrcReg &&
UseMI->getOperand(0).getReg() != DstReg &&
!JoinedCopies.count(UseMI) &&
ReMaterializeTrivialDef(li_->getInterval(SrcReg), false,
ReMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
UseMI->getOperand(0).getReg(), 0, UseMI))
continue;
}
@ -971,9 +971,9 @@ RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
Deads |= MO.isDead();
if (DstIsPhys)
MO.substPhysReg(DstReg, *tri_);
MO.substPhysReg(DstReg, *TRI);
else
MO.substVirtReg(DstReg, SubIdx, *tri_);
MO.substVirtReg(DstReg, SubIdx, *TRI);
}
// This instruction is a copy that will be removed.
@ -984,19 +984,19 @@ RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
// If UseMI was a simple SrcReg def, make sure we didn't turn it into a
// read-modify-write of DstReg.
if (Deads)
UseMI->addRegisterDead(DstReg, tri_);
UseMI->addRegisterDead(DstReg, TRI);
else if (!Reads && Writes)
UseMI->addRegisterDefined(DstReg, tri_);
UseMI->addRegisterDefined(DstReg, TRI);
// Kill flags apply to the whole physical register.
if (DstIsPhys && Kills)
UseMI->addRegisterKilled(DstReg, tri_);
UseMI->addRegisterKilled(DstReg, TRI);
}
DEBUG({
dbgs() << "\t\tupdated: ";
if (!UseMI->isDebugValue())
dbgs() << li_->getInstructionIndex(UseMI) << "\t";
dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
dbgs() << *UseMI;
});
}
@ -1005,18 +1005,18 @@ RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
/// removeIntervalIfEmpty - Check if the live interval of a physical register
/// is empty, if so remove it and also remove the empty intervals of its
/// sub-registers. Return true if live interval is removed.
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
const TargetRegisterInfo *tri_) {
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
const TargetRegisterInfo *TRI) {
if (li.empty()) {
if (TargetRegisterInfo::isPhysicalRegister(li.reg))
for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
if (!li_->hasInterval(*SR))
for (const unsigned* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
if (!LIS->hasInterval(*SR))
continue;
LiveInterval &sli = li_->getInterval(*SR);
LiveInterval &sli = LIS->getInterval(*SR);
if (sli.empty())
li_->removeInterval(*SR);
LIS->removeInterval(*SR);
}
li_->removeInterval(li.reg);
LIS->removeInterval(li.reg);
return true;
}
return false;
@ -1026,29 +1026,29 @@ static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
/// the val# it defines. If the live interval becomes empty, remove it as well.
bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
MachineInstr *DefMI) {
SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getDefIndex();
LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
if (DefIdx != MLR->valno->def)
return false;
li.removeValNo(MLR->valno);
return removeIntervalIfEmpty(li, li_, tri_);
return removeIntervalIfEmpty(li, LIS, TRI);
}
void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg,
const MachineInstr *CopyMI) {
SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
if (li_->hasInterval(DstReg)) {
LiveInterval &LI = li_->getInterval(DstReg);
SlotIndex DefIdx = LIS->getInstructionIndex(CopyMI).getDefIndex();
if (LIS->hasInterval(DstReg)) {
LiveInterval &LI = LIS->getInterval(DstReg);
if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
if (LR->valno->def == DefIdx)
LR->valno->setCopy(0);
}
if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
return;
for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
if (!li_->hasInterval(*AS))
for (const unsigned* AS = TRI->getAliasSet(DstReg); *AS; ++AS) {
if (!LIS->hasInterval(*AS))
continue;
LiveInterval &LI = li_->getInterval(*AS);
LiveInterval &LI = LIS->getInterval(*AS);
if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
if (LR->valno->def == DefIdx)
LR->valno->setCopy(0);
@ -1061,8 +1061,8 @@ void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg,
/// are not spillable! If the destination interval uses are far away, think
/// twice about coalescing them!
bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
bool Allocatable = li_->isAllocatable(CP.getDstReg());
LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
bool Allocatable = LIS->isAllocatable(CP.getDstReg());
LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
/// Always join simple intervals that are defined by a single copy from a
/// reserved register. This doesn't increase register pressure, so it is
@ -1085,8 +1085,8 @@ bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
// Don't join with physregs that have a ridiculous number of live
// ranges. The data structure performance is really bad when that
// happens.
if (li_->hasInterval(CP.getDstReg()) &&
li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
if (LIS->hasInterval(CP.getDstReg()) &&
LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
++numAborts;
DEBUG(dbgs()
<< "\tPhysical register live interval too complicated, abort!\n");
@ -1096,9 +1096,9 @@ bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
// FIXME: Why are we skipping this test for partial copies?
// CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
if (!CP.isPartial()) {
const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
if (Length > Threshold) {
++numAborts;
DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
@ -1124,12 +1124,12 @@ RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
// Early exit if the function is fairly small, coalesce aggressively if
// that's the case. For really special register classes with 3 or
// fewer registers, be a bit more careful.
(li_->getFuncInstructionCount() / NewRCCount) < 8)
(LIS->getFuncInstructionCount() / NewRCCount) < 8)
return true;
LiveInterval &SrcInt = li_->getInterval(SrcReg);
LiveInterval &DstInt = li_->getInterval(DstReg);
unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
LiveInterval &SrcInt = LIS->getInterval(SrcReg);
LiveInterval &DstInt = LIS->getInterval(DstReg);
unsigned SrcSize = LIS->getApproximateInstructionCount(SrcInt);
unsigned DstSize = LIS->getApproximateInstructionCount(DstInt);
// Coalesce aggressively if the intervals are small compared to the number of
// registers in the new class. The number 4 is fairly arbitrary, chosen to be
@ -1139,10 +1139,10 @@ RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
return true;
// Estimate *register use density*. If it doubles or more, abort.
unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
mri_->use_nodbg_end());
unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
mri_->use_nodbg_end());
unsigned SrcUses = std::distance(MRI->use_nodbg_begin(SrcReg),
MRI->use_nodbg_end());
unsigned DstUses = std::distance(MRI->use_nodbg_begin(DstReg),
MRI->use_nodbg_end());
unsigned NewUses = SrcUses + DstUses;
unsigned NewSize = SrcSize + DstSize;
if (SrcRC != NewRC && SrcSize > ThresSize) {
@ -1170,9 +1170,9 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
return false; // Already done.
DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
CoalescerPair CP(*tii_, *tri_);
CoalescerPair CP(*TII, *TRI);
if (!CP.setRegisters(CopyMI)) {
DEBUG(dbgs() << "\tNot coalescable.\n");
return false;
@ -1192,8 +1192,8 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
return false; // Not coalescable.
}
DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), tri_)
<< " with " << PrintReg(CP.getDstReg(), tri_, CP.getSubIdx())
DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
<< " with " << PrintReg(CP.getDstReg(), TRI, CP.getSubIdx())
<< "\n");
// Enforce policies.
@ -1202,7 +1202,7 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
// Before giving up coalescing, if definition of source is defined by
// trivial computation, try rematerializing it.
if (!CP.isFlipped() &&
ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
CP.getDstReg(), 0, CopyMI))
return true;
return false;
@ -1216,8 +1216,8 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
return false;
}
if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
mri_->getRegClass(CP.getSrcReg()),
mri_->getRegClass(CP.getDstReg()),
MRI->getRegClass(CP.getSrcReg()),
MRI->getRegClass(CP.getDstReg()),
CP.getNewRC())) {
DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
Again = true; // May be possible to coalesce later.
@ -1226,8 +1226,8 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
}
// When possible, let DstReg be the larger interval.
if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
li_->getInterval(CP.getDstReg()).ranges.size())
if (!CP.getSubIdx() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
LIS->getInterval(CP.getDstReg()).ranges.size())
CP.flip();
}
@ -1241,7 +1241,7 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
// If definition of source is defined by trivial computation, try
// rematerializing it.
if (!CP.isFlipped() &&
ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
CP.getDstReg(), 0, CopyMI))
return true;
@ -1265,7 +1265,7 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
// other. Make sure the resulting register is set to the right register class.
if (CP.isCrossClass()) {
++numCrossRCs;
mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
}
// Remember to delete the copy instruction.
@ -1279,10 +1279,10 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
SmallVector<MachineBasicBlock*, 16> BlockSeq;
// JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
// ranges for this, and they are preserved.
LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
I != E; ++I ) {
li_->findLiveInMBBs(I->start, I->end, BlockSeq);
LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
MachineBasicBlock &block = *BlockSeq[idx];
if (!block.isLiveIn(CP.getDstReg()))
@ -1294,15 +1294,15 @@ bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
// SrcReg is guarateed to be the register whose live interval that is
// being merged.
li_->removeInterval(CP.getSrcReg());
LIS->removeInterval(CP.getSrcReg());
// Update regalloc hint.
tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
DEBUG({
LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
dbgs() << "\tJoined. Result = ";
DstInt.print(dbgs(), tri_);
DstInt.print(dbgs(), TRI);
dbgs() << "\n";
});
@ -1433,18 +1433,18 @@ static bool RegistersDefinedFromSameValue(LiveIntervals &li,
/// JoinIntervals - Attempt to join these two intervals. On failure, this
/// returns false.
bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
// If a live interval is a physical register, check for interference with any
// aliases. The interference check implemented here is a bit more conservative
// than the full interfeence check below. We allow overlapping live ranges
// only when one is a copy of the other.
if (CP.isPhys()) {
for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
if (!li_->hasInterval(*AS))
for (const unsigned *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
if (!LIS->hasInterval(*AS))
continue;
const LiveInterval &LHS = li_->getInterval(*AS);
const LiveInterval &LHS = LIS->getInterval(*AS);
LiveInterval::const_iterator LI = LHS.begin();
for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
RI != RE; ++RI) {
@ -1452,10 +1452,10 @@ bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
// Does LHS have an overlapping live range starting before RI?
if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
(RI->start != RI->valno->def ||
!CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
!CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
DEBUG({
dbgs() << "\t\tInterference from alias: ";
LHS.print(dbgs(), tri_);
LHS.print(dbgs(), TRI);
dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
});
return false;
@ -1464,10 +1464,10 @@ bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
// Check that LHS ranges beginning in this range are copies.
for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
if (LI->start != LI->valno->def ||
!CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
!CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
DEBUG({
dbgs() << "\t\tInterference from alias: ";
LHS.print(dbgs(), tri_);
LHS.print(dbgs(), TRI);
dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
});
return false;
@ -1487,8 +1487,8 @@ bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
SmallVector<MachineInstr*, 8> DupCopies;
LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
// Loop over the value numbers of the LHS, seeing if any are defined from
// the RHS.
@ -1511,7 +1511,7 @@ bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
// from the RHS interval, we can use its value #.
MachineInstr *MI = VNI->getCopy();
if (!CP.isCoalescable(MI) &&
!RegistersDefinedFromSameValue(*li_, *tri_, CP, VNI, lr, DupCopies))
!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
continue;
LHSValsDefinedFromRHS[VNI] = lr->valno;
@ -1538,7 +1538,7 @@ bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
// from the LHS interval, we can use its value #.
MachineInstr *MI = VNI->getCopy();
if (!CP.isCoalescable(MI) &&
!RegistersDefinedFromSameValue(*li_, *tri_, CP, VNI, lr, DupCopies))
!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
continue;
RHSValsDefinedFromLHS[VNI] = lr->valno;
@ -1660,7 +1660,7 @@ bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
// and mark the X as coalesced to keep the illusion.
unsigned Src = MI->getOperand(1).getReg();
SourceRegisters.push_back(Src);
MI->getOperand(0).substVirtReg(Src, 0, *tri_);
MI->getOperand(0).substVirtReg(Src, 0, *TRI);
markAsJoined(MI);
}
@ -1669,13 +1669,13 @@ bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
// that B = X is gone.
for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
E = SourceRegisters.end(); I != E; ++I) {
li_->shrinkToUses(&li_->getInterval(*I));
LIS->shrinkToUses(&LIS->getInterval(*I));
}
// If we get here, we know that we can coalesce the live ranges. Ask the
// intervals to coalesce themselves now.
LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
mri_);
MRI);
return true;
}
@ -1726,7 +1726,7 @@ void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
ImpDefCopies.push_back(Inst);
else if (SrcIsPhys || DstIsPhys)
PhysCopies.push_back(Inst);
@ -1764,9 +1764,9 @@ void RegisterCoalescer::joinIntervals() {
DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
std::vector<MachineInstr*> TryAgainList;
if (loopInfo->empty()) {
if (Loops->empty()) {
// If there are no loops in the function, join intervals in function order.
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
for (MachineFunction::iterator I = MF->begin(), E = MF->end();
I != E; ++I)
CopyCoalesceInMBB(I, TryAgainList);
} else {
@ -1777,9 +1777,9 @@ void RegisterCoalescer::joinIntervals() {
// Join intervals in the function prolog first. We want to join physical
// registers with virtual registers before the intervals got too long.
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
MachineBasicBlock *MBB = I;
MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
}
// Sort by loop depth.
@ -1818,22 +1818,22 @@ void RegisterCoalescer::releaseMemory() {
}
bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
mri_ = &fn.getRegInfo();
tm_ = &fn.getTarget();
tri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
li_ = &getAnalysis<LiveIntervals>();
ldv_ = &getAnalysis<LiveDebugVariables>();
MF = &fn;
MRI = &fn.getRegInfo();
TM = &fn.getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
LIS = &getAnalysis<LiveIntervals>();
LDV = &getAnalysis<LiveDebugVariables>();
AA = &getAnalysis<AliasAnalysis>();
loopInfo = &getAnalysis<MachineLoopInfo>();
Loops = &getAnalysis<MachineLoopInfo>();
DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
<< "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
<< ((Value*)MF->getFunction())->getName() << '\n');
if (VerifyCoalescing)
mf_->verify(this, "Before register coalescing");
MF->verify(this, "Before register coalescing");
RegClassInfo.runOnMachineFunction(fn);
@ -1842,9 +1842,9 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
joinIntervals();
DEBUG({
dbgs() << "********** INTERVALS POST JOINING **********\n";
for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
I != E; ++I){
I->second->print(dbgs(), tri_);
I->second->print(dbgs(), TRI);
dbgs() << "\n";
}
});
@ -1853,7 +1853,7 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
// Perform a final pass over the instructions and compute spill weights
// and remove identity moves.
SmallVector<unsigned, 4> DeadDefs;
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
@ -1875,8 +1875,8 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
if (MI->allDefsAreDead()) {
if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
li_->hasInterval(SrcReg))
li_->shrinkToUses(&li_->getInterval(SrcReg));
LIS->hasInterval(SrcReg))
LIS->shrinkToUses(&LIS->getInterval(SrcReg));
DoDelete = true;
}
if (!DoDelete) {
@ -1885,10 +1885,10 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
MI->RemoveOperand(3);
MI->RemoveOperand(1);
}
MI->setDesc(tii_->get(TargetOpcode::KILL));
MI->setDesc(TII->get(TargetOpcode::KILL));
mii = llvm::next(mii);
} else {
li_->RemoveMachineInstrFromMaps(MI);
LIS->RemoveMachineInstrFromMaps(MI);
mii = mbbi->erase(mii);
++numPeep;
}
@ -1910,7 +1910,7 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
if (MO.isDead())
continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
!mri_->use_nodbg_empty(Reg)) {
!MRI->use_nodbg_empty(Reg)) {
isDead = false;
break;
}
@ -1919,9 +1919,9 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
while (!DeadDefs.empty()) {
unsigned DeadDef = DeadDefs.back();
DeadDefs.pop_back();
RemoveDeadDef(li_->getInterval(DeadDef), MI);
RemoveDeadDef(LIS->getInterval(DeadDef), MI);
}
li_->RemoveMachineInstrFromMaps(mii);
LIS->RemoveMachineInstrFromMaps(mii);
mii = mbbi->erase(mii);
continue;
} else
@ -1931,14 +1931,14 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
++mii;
// Check for now unnecessary kill flags.
if (li_->isNotInMIMap(MI)) continue;
SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
if (LIS->isNotInMIMap(MI)) continue;
SlotIndex DefIdx = LIS->getInstructionIndex(MI).getDefIndex();
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isKill()) continue;
unsigned reg = MO.getReg();
if (!reg || !li_->hasInterval(reg)) continue;
if (!li_->getInterval(reg).killedAt(DefIdx)) {
if (!reg || !LIS->hasInterval(reg)) continue;
if (!LIS->getInterval(reg).killedAt(DefIdx)) {
MO.setIsKill(false);
continue;
}
@ -1946,22 +1946,22 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
// remain alive.
if (!TargetRegisterInfo::isPhysicalRegister(reg))
continue;
for (const unsigned *SR = tri_->getSubRegisters(reg);
for (const unsigned *SR = TRI->getSubRegisters(reg);
unsigned S = *SR; ++SR)
if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
MI->addRegisterDefined(S, tri_);
if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
MI->addRegisterDefined(S, TRI);
}
}
}
DEBUG(dump());
DEBUG(ldv_->dump());
DEBUG(LDV->dump());
if (VerifyCoalescing)
mf_->verify(this, "After register coalescing");
MF->verify(this, "After register coalescing");
return true;
}
/// print - Implement the dump method.
void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
li_->print(O, m);
LIS->print(O, m);
}

View File

@ -26,46 +26,46 @@ namespace llvm {
/// two registers can be coalesced, CoalescerPair can determine if a copy
/// instruction would become an identity copy after coalescing.
class CoalescerPair {
const TargetInstrInfo &tii_;
const TargetRegisterInfo &tri_;
const TargetInstrInfo &TII;
const TargetRegisterInfo &TRI;
/// dstReg_ - The register that will be left after coalescing. It can be a
/// DstReg - The register that will be left after coalescing. It can be a
/// virtual or physical register.
unsigned dstReg_;
unsigned DstReg;
/// srcReg_ - the virtual register that will be coalesced into dstReg.
unsigned srcReg_;
/// SrcReg - the virtual register that will be coalesced into dstReg.
unsigned SrcReg;
/// subReg_ - The subregister index of srcReg in dstReg_. It is possible the
/// coalesce srcReg_ into a subreg of the larger dstReg_ when dstReg_ is a
/// subReg_ - The subregister index of srcReg in DstReg. It is possible the
/// coalesce SrcReg into a subreg of the larger DstReg when DstReg is a
/// virtual register.
unsigned subIdx_;
unsigned SubIdx;
/// partial_ - True when the original copy was a partial subregister copy.
bool partial_;
/// Partial - True when the original copy was a partial subregister copy.
bool Partial;
/// crossClass_ - True when both regs are virtual, and newRC is constrained.
bool crossClass_;
/// CrossClass - True when both regs are virtual, and newRC is constrained.
bool CrossClass;
/// flipped_ - True when DstReg and SrcReg are reversed from the oriignal copy
/// instruction.
bool flipped_;
/// Flipped - True when DstReg and SrcReg are reversed from the oriignal
/// copy instruction.
bool Flipped;
/// newRC_ - The register class of the coalesced register, or NULL if dstReg_
/// NewRC - The register class of the coalesced register, or NULL if DstReg
/// is a physreg.
const TargetRegisterClass *newRC_;
const TargetRegisterClass *NewRC;
public:
CoalescerPair(const TargetInstrInfo &tii, const TargetRegisterInfo &tri)
: tii_(tii), tri_(tri), dstReg_(0), srcReg_(0), subIdx_(0),
partial_(false), crossClass_(false), flipped_(false), newRC_(0) {}
: TII(tii), TRI(tri), DstReg(0), SrcReg(0), SubIdx(0),
Partial(false), CrossClass(false), Flipped(false), NewRC(0) {}
/// setRegisters - set registers to match the copy instruction MI. Return
/// false if MI is not a coalescable copy instruction.
bool setRegisters(const MachineInstr*);
/// flip - Swap srcReg_ and dstReg_. Return false if swapping is impossible
/// because dstReg_ is a physical register, or subIdx_ is set.
/// flip - Swap SrcReg and DstReg. Return false if swapping is impossible
/// because DstReg is a physical register, or SubIdx is set.
bool flip();
/// isCoalescable - Return true if MI is a copy instruction that will become
@ -73,32 +73,33 @@ namespace llvm {
bool isCoalescable(const MachineInstr*) const;
/// isPhys - Return true if DstReg is a physical register.
bool isPhys() const { return !newRC_; }
bool isPhys() const { return !NewRC; }
/// isPartial - Return true if the original copy instruction did not copy the
/// full register, but was a subreg operation.
bool isPartial() const { return partial_; }
/// isPartial - Return true if the original copy instruction did not copy
/// the full register, but was a subreg operation.
bool isPartial() const { return Partial; }
/// isCrossClass - Return true if DstReg is virtual and NewRC is a smaller register class than DstReg's.
bool isCrossClass() const { return crossClass_; }
/// isCrossClass - Return true if DstReg is virtual and NewRC is a smaller
/// register class than DstReg's.
bool isCrossClass() const { return CrossClass; }
/// isFlipped - Return true when getSrcReg is the register being defined by
/// the original copy instruction.
bool isFlipped() const { return flipped_; }
bool isFlipped() const { return Flipped; }
/// getDstReg - Return the register (virtual or physical) that will remain
/// after coalescing.
unsigned getDstReg() const { return dstReg_; }
unsigned getDstReg() const { return DstReg; }
/// getSrcReg - Return the virtual register that will be coalesced away.
unsigned getSrcReg() const { return srcReg_; }
unsigned getSrcReg() const { return SrcReg; }
/// getSubIdx - Return the subregister index in DstReg that SrcReg will be
/// coalesced into, or 0.
unsigned getSubIdx() const { return subIdx_; }
unsigned getSubIdx() const { return SubIdx; }
/// getNewRC - Return the register class of the coalesced register.
const TargetRegisterClass *getNewRC() const { return newRC_; }
const TargetRegisterClass *getNewRC() const { return NewRC; }
};
} // End llvm namespace