Support: Move OnDiskHashTable from clang to llvm

This introduces clang's Basic/OnDiskHashTable.h into llvm as
Support/OnDiskHashTable.h. I've taken the opportunity to add doxygen
comments and run the file through clang-format, but other than the
namespace changing from clang:: to llvm:: the API is identical.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206438 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Justin Bogner 2014-04-17 02:16:53 +00:00
parent 003de065a3
commit c30a52807f

View File

@ -0,0 +1,544 @@
//===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines facilities for reading and writing on-disk hash tables.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ON_DISK_HASH_TABLE_H
#define LLVM_SUPPORT_ON_DISK_HASH_TABLE_H
#include "llvm/Support/Allocator.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdlib>
namespace llvm {
/// \brief Generates an on disk hash table.
///
/// This needs an \c Info that handles storing values into the hash table's
/// payload and computes the hash for a given key. This should provide the
/// following interface:
///
/// \code
/// class ExampleInfo {
/// public:
/// typedef ExampleKey key_type; // Must be copy constructible
/// typedef ExampleKey &key_type_ref;
/// typedef ExampleData data_type; // Must be copy constructible
/// typedef ExampleData &data_type_ref;
///
/// /// Calculate the hash for Key
/// static unsigned ComputeHash(key_type_ref Key);
/// /// Return the lengths, in bytes, of the given Key/Data pair.
/// static std::pair<unsigned, unsigned>
/// EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data);
/// /// Write Key to Out. KeyLen is the length from EmitKeyDataLength.
/// static void EmitKey(raw_ostream &Out, key_type_ref Key, unsigned KeyLen);
/// /// Write Data to Out. DataLen is the length from EmitKeyDataLength.
/// static void EmitData(raw_ostream &Out, key_type_ref Key,
/// data_type_ref Data, unsigned DataLen);
/// };
/// \endcode
template <typename Info> class OnDiskChainedHashTableGenerator {
unsigned NumBuckets;
unsigned NumEntries;
llvm::BumpPtrAllocator BA;
/// \brief A single item in the hash table.
class Item {
public:
typename Info::key_type Key;
typename Info::data_type Data;
Item *Next;
const uint32_t Hash;
Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data,
Info &InfoObj)
: Key(Key), Data(Data), Next(0), Hash(InfoObj.ComputeHash(Key)) {}
};
/// \brief A linked list of values in a particular hash bucket.
class Bucket {
public:
uint32_t Off;
Item *Head;
unsigned Length;
Bucket() {}
};
Bucket *Buckets;
private:
/// \brief Insert an item into the appropriate hash bucket.
void insert(Bucket *Buckets, size_t Size, Item *E) {
Bucket &B = Buckets[E->Hash & (Size - 1)];
E->Next = B.Head;
++B.Length;
B.Head = E;
}
/// \brief Resize the hash table, moving the old entries into the new buckets.
void resize(size_t NewSize) {
Bucket *NewBuckets = (Bucket *)std::calloc(NewSize, sizeof(Bucket));
// Populate NewBuckets with the old entries.
for (unsigned I = 0; I < NumBuckets; ++I)
for (Item *E = Buckets[I].Head; E;) {
Item *N = E->Next;
E->Next = 0;
insert(NewBuckets, NewSize, E);
E = N;
}
free(Buckets);
NumBuckets = NewSize;
Buckets = NewBuckets;
}
public:
/// \brief Insert an entry into the table.
void insert(typename Info::key_type_ref Key,
typename Info::data_type_ref Data) {
Info InfoObj;
insert(Key, Data, InfoObj);
}
/// \brief Insert an entry into the table.
///
/// Uses the provided Info instead of a stack allocated one.
void insert(typename Info::key_type_ref Key,
typename Info::data_type_ref Data, Info &InfoObj) {
++NumEntries;
if (4 * NumEntries >= 3 * NumBuckets)
resize(NumBuckets * 2);
insert(Buckets, NumBuckets,
new (BA.Allocate<Item>()) Item(Key, Data, InfoObj));
}
/// \brief Emit the table to Out, which must not be at offset 0.
uint32_t Emit(raw_ostream &Out) {
Info InfoObj;
return Emit(Out, InfoObj);
}
/// \brief Emit the table to Out, which must not be at offset 0.
///
/// Uses the provided Info instead of a stack allocated one.
uint32_t Emit(raw_ostream &Out, Info &InfoObj) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
// Emit the payload of the table.
for (unsigned I = 0; I < NumBuckets; ++I) {
Bucket &B = Buckets[I];
if (!B.Head)
continue;
// Store the offset for the data of this bucket.
B.Off = Out.tell();
assert(B.Off && "Cannot write a bucket at offset 0. Please add padding.");
// Write out the number of items in the bucket.
LE.write<uint16_t>(B.Length);
assert(B.Length != 0 && "Bucket has a head but zero length?");
// Write out the entries in the bucket.
for (Item *I = B.Head; I; I = I->Next) {
LE.write<uint32_t>(I->Hash);
const std::pair<unsigned, unsigned> &Len =
InfoObj.EmitKeyDataLength(Out, I->Key, I->Data);
InfoObj.EmitKey(Out, I->Key, Len.first);
InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
}
}
// Pad with zeros so that we can start the hashtable at an aligned address.
uint32_t TableOff = Out.tell();
uint64_t N = llvm::OffsetToAlignment(TableOff, alignOf<uint32_t>());
TableOff += N;
while (N--)
LE.write<uint8_t>(0);
// Emit the hashtable itself.
LE.write<uint32_t>(NumBuckets);
LE.write<uint32_t>(NumEntries);
for (unsigned I = 0; I < NumBuckets; ++I)
LE.write<uint32_t>(Buckets[I].Off);
return TableOff;
}
OnDiskChainedHashTableGenerator() {
NumEntries = 0;
NumBuckets = 64;
// Note that we do not need to run the constructors of the individual
// Bucket objects since 'calloc' returns bytes that are all 0.
Buckets = (Bucket *)std::calloc(NumBuckets, sizeof(Bucket));
}
~OnDiskChainedHashTableGenerator() { std::free(Buckets); }
};
/// \brief Provides lookup on an on disk hash table.
///
/// This needs an \c Info that handles reading values from the hash table's
/// payload and computes the hash for a given key. This should provide the
/// following interface:
///
/// \code
/// class ExampleLookupInfo {
/// public:
/// typedef ExampleData data_type;
/// typedef ExampleInternalKey internal_key_type; // The stored key type.
/// typedef ExampleKey external_key_type; // The type to pass to find().
///
/// /// Compare two keys for equality.
/// static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2);
/// /// Calculate the hash for the given key.
/// static unsigned ComputeHash(internal_key_type &IKey);
/// /// Translate from the semantic type of a key in the hash table to the
/// /// type that is actually stored and used for hashing and comparisons.
/// /// The internal and external types are often the same, in which case this
/// /// can simply return the passed in value.
/// static const internal_key_type &GetInternalKey(external_key_type &EKey);
/// /// Read the key and data length from Buffer, leaving it pointing at the
/// /// following byte.
/// static std::pair<unsigned, unsigned>
/// ReadKeyDataLength(const unsigned char *&Buffer);
/// /// Read the key from Buffer, given the KeyLen as reported from
/// /// ReadKeyDataLength.
/// const internal_key_type &ReadKey(const unsigned char *Buffer,
/// unsigned KeyLen);
/// /// Read the data for Key from Buffer, given the DataLen as reported from
/// /// ReadKeyDataLength.
/// data_type ReadData(StringRef Key, const unsigned char *Buffer,
/// unsigned DataLen);
/// };
/// \endcode
template <typename Info> class OnDiskChainedHashTable {
const unsigned NumBuckets;
const unsigned NumEntries;
const unsigned char *const Buckets;
const unsigned char *const Base;
Info InfoObj;
public:
typedef typename Info::internal_key_type internal_key_type;
typedef typename Info::external_key_type external_key_type;
typedef typename Info::data_type data_type;
OnDiskChainedHashTable(unsigned NumBuckets, unsigned NumEntries,
const unsigned char *Buckets,
const unsigned char *Base,
const Info &InfoObj = Info())
: NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets),
Base(Base), InfoObj(InfoObj) {
assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
"'buckets' must have a 4-byte alignment");
}
unsigned getNumBuckets() const { return NumBuckets; }
unsigned getNumEntries() const { return NumEntries; }
const unsigned char *getBase() const { return Base; }
const unsigned char *getBuckets() const { return Buckets; }
bool isEmpty() const { return NumEntries == 0; }
class iterator {
internal_key_type Key;
const unsigned char *const Data;
const unsigned Len;
Info *InfoObj;
public:
iterator() : Data(0), Len(0) {}
iterator(const internal_key_type K, const unsigned char *D, unsigned L,
Info *InfoObj)
: Key(K), Data(D), Len(L), InfoObj(InfoObj) {}
data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); }
bool operator==(const iterator &X) const { return X.Data == Data; }
bool operator!=(const iterator &X) const { return X.Data != Data; }
};
/// \brief Look up the stored data for a particular key.
iterator find(const external_key_type &EKey, Info *InfoPtr = 0) {
if (!InfoPtr)
InfoPtr = &InfoObj;
using namespace llvm::support;
const internal_key_type &IKey = InfoObj.GetInternalKey(EKey);
unsigned KeyHash = InfoObj.ComputeHash(IKey);
// Each bucket is just a 32-bit offset into the hash table file.
unsigned Idx = KeyHash & (NumBuckets - 1);
const unsigned char *Bucket = Buckets + sizeof(uint32_t) * Idx;
unsigned Offset = endian::readNext<uint32_t, little, aligned>(Bucket);
if (Offset == 0)
return iterator(); // Empty bucket.
const unsigned char *Items = Base + Offset;
// 'Items' starts with a 16-bit unsigned integer representing the
// number of items in this bucket.
unsigned Len = endian::readNext<uint16_t, little, unaligned>(Items);
for (unsigned i = 0; i < Len; ++i) {
// Read the hash.
uint32_t ItemHash = endian::readNext<uint32_t, little, unaligned>(Items);
// Determine the length of the key and the data.
const std::pair<unsigned, unsigned> &L = Info::ReadKeyDataLength(Items);
unsigned ItemLen = L.first + L.second;
// Compare the hashes. If they are not the same, skip the entry entirely.
if (ItemHash != KeyHash) {
Items += ItemLen;
continue;
}
// Read the key.
const internal_key_type &X =
InfoPtr->ReadKey((const unsigned char *const)Items, L.first);
// If the key doesn't match just skip reading the value.
if (!InfoPtr->EqualKey(X, IKey)) {
Items += ItemLen;
continue;
}
// The key matches!
return iterator(X, Items + L.first, L.second, InfoPtr);
}
return iterator();
}
iterator end() const { return iterator(); }
Info &getInfoObj() { return InfoObj; }
/// \brief Create the hash table.
///
/// \param Buckets is the beginning of the hash table itself, which follows
/// the payload of entire structure. This is the value returned by
/// OnDiskHashTableGenerator::Emit.
///
/// \param Base is the point from which all offsets into the structure are
/// based. This is offset 0 in the stream that was used when Emitting the
/// table.
static OnDiskChainedHashTable *Create(const unsigned char *Buckets,
const unsigned char *const Base,
const Info &InfoObj = Info()) {
using namespace llvm::support;
assert(Buckets > Base);
assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
"buckets should be 4-byte aligned.");
unsigned NumBuckets = endian::readNext<uint32_t, little, aligned>(Buckets);
unsigned NumEntries = endian::readNext<uint32_t, little, aligned>(Buckets);
return new OnDiskChainedHashTable<Info>(NumBuckets, NumEntries, Buckets,
Base, InfoObj);
}
};
/// \brief Provides lookup and iteration over an on disk hash table.
///
/// \copydetails llvm::OnDiskChainedHashTable
template <typename Info>
class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> {
const unsigned char *Payload;
public:
typedef OnDiskChainedHashTable<Info> base_type;
typedef typename base_type::internal_key_type internal_key_type;
typedef typename base_type::external_key_type external_key_type;
typedef typename base_type::data_type data_type;
OnDiskIterableChainedHashTable(unsigned NumBuckets, unsigned NumEntries,
const unsigned char *Buckets,
const unsigned char *Payload,
const unsigned char *Base,
const Info &InfoObj = Info())
: base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj),
Payload(Payload) {}
/// \brief Iterates over all of the keys in the table.
class key_iterator {
const unsigned char *Ptr;
unsigned NumItemsInBucketLeft;
unsigned NumEntriesLeft;
Info *InfoObj;
public:
typedef external_key_type value_type;
key_iterator(const unsigned char *const Ptr, unsigned NumEntries,
Info *InfoObj)
: Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries),
InfoObj(InfoObj) {}
key_iterator()
: Ptr(0), NumItemsInBucketLeft(0), NumEntriesLeft(0), InfoObj(0) {}
friend bool operator==(const key_iterator &X, const key_iterator &Y) {
return X.NumEntriesLeft == Y.NumEntriesLeft;
}
friend bool operator!=(const key_iterator &X, const key_iterator &Y) {
return X.NumEntriesLeft != Y.NumEntriesLeft;
}
key_iterator &operator++() { // Preincrement
using namespace llvm::support;
if (!NumItemsInBucketLeft) {
// 'Items' starts with a 16-bit unsigned integer representing the
// number of items in this bucket.
NumItemsInBucketLeft =
endian::readNext<uint16_t, little, unaligned>(Ptr);
}
Ptr += 4; // Skip the hash.
// Determine the length of the key and the data.
const std::pair<unsigned, unsigned> &L = Info::ReadKeyDataLength(Ptr);
Ptr += L.first + L.second;
assert(NumItemsInBucketLeft);
--NumItemsInBucketLeft;
assert(NumEntriesLeft);
--NumEntriesLeft;
return *this;
}
key_iterator operator++(int) { // Postincrement
key_iterator tmp = *this; ++*this; return tmp;
}
value_type operator*() const {
const unsigned char *LocalPtr = Ptr;
if (!NumItemsInBucketLeft)
LocalPtr += 2; // number of items in bucket
LocalPtr += 4; // Skip the hash.
// Determine the length of the key and the data.
const std::pair<unsigned, unsigned> &L =
Info::ReadKeyDataLength(LocalPtr);
// Read the key.
const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
return InfoObj->GetExternalKey(Key);
}
};
key_iterator key_begin() {
return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
}
key_iterator key_end() { return key_iterator(); }
/// \brief Iterates over all the entries in the table, returning the data.
class data_iterator {
const unsigned char *Ptr;
unsigned NumItemsInBucketLeft;
unsigned NumEntriesLeft;
Info *InfoObj;
public:
typedef data_type value_type;
data_iterator(const unsigned char *const Ptr, unsigned NumEntries,
Info *InfoObj)
: Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries),
InfoObj(InfoObj) {}
data_iterator()
: Ptr(0), NumItemsInBucketLeft(0), NumEntriesLeft(0), InfoObj(0) {}
bool operator==(const data_iterator &X) const {
return X.NumEntriesLeft == NumEntriesLeft;
}
bool operator!=(const data_iterator &X) const {
return X.NumEntriesLeft != NumEntriesLeft;
}
data_iterator &operator++() { // Preincrement
using namespace llvm::support;
if (!NumItemsInBucketLeft) {
// 'Items' starts with a 16-bit unsigned integer representing the
// number of items in this bucket.
NumItemsInBucketLeft =
endian::readNext<uint16_t, little, unaligned>(Ptr);
}
Ptr += 4; // Skip the hash.
// Determine the length of the key and the data.
const std::pair<unsigned, unsigned> &L = Info::ReadKeyDataLength(Ptr);
Ptr += L.first + L.second;
assert(NumItemsInBucketLeft);
--NumItemsInBucketLeft;
assert(NumEntriesLeft);
--NumEntriesLeft;
return *this;
}
data_iterator operator++(int) { // Postincrement
data_iterator tmp = *this; ++*this; return tmp;
}
value_type operator*() const {
const unsigned char *LocalPtr = Ptr;
if (!NumItemsInBucketLeft)
LocalPtr += 2; // number of items in bucket
LocalPtr += 4; // Skip the hash.
// Determine the length of the key and the data.
const std::pair<unsigned, unsigned> &L =
Info::ReadKeyDataLength(LocalPtr);
// Read the key.
const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
return InfoObj->ReadData(Key, LocalPtr + L.first, L.second);
}
};
data_iterator data_begin() {
return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
}
data_iterator data_end() { return data_iterator(); }
/// \brief Create the hash table.
///
/// \param Buckets is the beginning of the hash table itself, which follows
/// the payload of entire structure. This is the value returned by
/// OnDiskHashTableGenerator::Emit.
///
/// \param Payload is the beginning of the data contained in the table. This
/// is Base plus any padding or header data that was stored, ie, the offset
/// that the stream was at when calling Emit.
///
/// \param Base is the point from which all offsets into the structure are
/// based. This is offset 0 in the stream that was used when Emitting the
/// table.
static OnDiskIterableChainedHashTable *
Create(const unsigned char *Buckets, const unsigned char *const Payload,
const unsigned char *const Base, const Info &InfoObj = Info()) {
using namespace llvm::support;
assert(Buckets > Base);
assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
"buckets should be 4-byte aligned.");
unsigned NumBuckets = endian::readNext<uint32_t, little, aligned>(Buckets);
unsigned NumEntries = endian::readNext<uint32_t, little, aligned>(Buckets);
return new OnDiskIterableChainedHashTable<Info>(
NumBuckets, NumEntries, Buckets, Payload, Base, InfoObj);
}
};
} // end namespace llvm
#endif // LLVM_SUPPORT_ON_DISK_HASH_TABLE_H