Add a LiveRangeQuery class.

This class is meant to be the primary interface for examining a live
range in the vicinity on a given instruction. It avoids all the messy
dealings with iterators and early clobbers.

This is a more abstract interface to live ranges, hiding the
implementation as a vector of segments.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157141 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2012-05-20 02:44:30 +00:00
parent fcaf5fa89c
commit c313c6b9ff

View File

@ -500,6 +500,91 @@ namespace llvm {
return OS;
}
/// LiveRangeQuery - Query information about a live range around a given
/// instruction. This class hides the implementation details of live ranges,
/// and it should be used as the primary interface for examining live ranges
/// around instructions.
///
class LiveRangeQuery {
VNInfo *EarlyVal;
VNInfo *LateVal;
SlotIndex EndPoint;
bool Kill;
public:
/// Create a LiveRangeQuery for the given live range and instruction index.
/// The sub-instruction slot of Idx doesn't matter, only the instruction it
/// refers to is considered.
LiveRangeQuery(const LiveInterval &LI, SlotIndex Idx)
: EarlyVal(0), LateVal(0), Kill(false) {
// Find the segment that enters the instruction.
LiveInterval::const_iterator I = LI.find(Idx.getBaseIndex());
LiveInterval::const_iterator E = LI.end();
if (I == E)
return;
// Is this an instruction live-in segment?
if (SlotIndex::isEarlierInstr(I->start, Idx)) {
EarlyVal = I->valno;
EndPoint = I->end;
// Move to the potentially live-out segment.
if (SlotIndex::isSameInstr(Idx, I->end)) {
Kill = true;
if (++I == E)
return;
}
}
// I now points to the segment that may be live-through, or defined by
// this instr. Ignore segments starting after the current instr.
if (SlotIndex::isEarlierInstr(Idx, I->start))
return;
LateVal = I->valno;
EndPoint = I->end;
}
/// Return the value that is live-in to the instruction. This is the value
/// that will be read by the instruction's use operands. Return NULL if no
/// value is live-in.
VNInfo *valueIn() const {
return EarlyVal;
}
/// Return true if the live-in value is killed by this instruction. This
/// means that either the live range ends at the instruction, or it changes
/// value.
bool isKill() const {
return Kill;
}
/// Return true if this instruction has a dead def.
bool isDeadDef() const {
return EndPoint.isDead();
}
/// Return the value leaving the instruction, if any. This can be a
/// live-through value, or a live def. A dead def returns NULL.
VNInfo *valueOut() const {
return isDeadDef() ? 0 : LateVal;
}
/// Return the value defined by this instruction, if any. This includes
/// dead defs, it is the value created by the instruction's def operands.
VNInfo *valueDefined() const {
return EarlyVal == LateVal ? 0 : LateVal;
}
/// Return the end point of the last live range segment to interact with
/// the instruction, if any.
///
/// The end point is an invalid SlotIndex only if the live range doesn't
/// intersect the instruction at all.
///
/// The end point may be at or past the end of the instruction's basic
/// block. That means the value was live out of the block.
SlotIndex endPoint() const {
return EndPoint;
}
};
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
/// LiveInterval into equivalence clases of connected components. A
/// LiveInterval that has multiple connected components can be broken into