mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-07 14:33:15 +00:00
Relocating Graph.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2770 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
15c5977869
commit
c43fa80e1f
465
lib/Transforms/Instrumentation/ProfilePaths/Graph.h
Normal file
465
lib/Transforms/Instrumentation/ProfilePaths/Graph.h
Normal file
@ -0,0 +1,465 @@
|
||||
//===-- ------------------------llvm/graph.h ---------------------*- C++ -*--=//
|
||||
//
|
||||
//Header file for Graph: This Graph is used by
|
||||
//PathProfiles class, and is used
|
||||
//for detecting proper points in cfg for code insertion
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_GRAPH_H
|
||||
#define LLVM_GRAPH_H
|
||||
|
||||
#include "Support/StatisticReporter.h"
|
||||
|
||||
#include <map>
|
||||
//#include <list>
|
||||
//#include <set>
|
||||
#include <vector>
|
||||
#include <cstdlib>
|
||||
|
||||
#include "llvm/BasicBlock.h"
|
||||
|
||||
class BasicBlock;
|
||||
//class Method;
|
||||
class Module;
|
||||
//=======
|
||||
class Function;
|
||||
//>>>>>>> 1.4
|
||||
class Instruction;
|
||||
|
||||
//Class Node
|
||||
//It forms the vertex for the graph
|
||||
class Node{
|
||||
public:
|
||||
BasicBlock* element;
|
||||
int weight;
|
||||
public:
|
||||
inline Node(BasicBlock* x) { element=x; weight=0; }
|
||||
inline BasicBlock* &getElement() { return element; }
|
||||
inline BasicBlock* const &getElement() const { return element; }
|
||||
inline int getWeight() { return weight; }
|
||||
inline void setElement(BasicBlock* e) { element=e; }
|
||||
inline void setWeight(int w) { weight=w;}
|
||||
inline bool operator<(Node& nd) const { return element<nd.element; }
|
||||
inline bool operator==(Node& nd) const { return element==nd.element; }
|
||||
};
|
||||
////////////////////////
|
||||
|
||||
//Class Edge
|
||||
//Denotes an edge in the graph
|
||||
class Edge{
|
||||
private:
|
||||
Node *first;
|
||||
Node *second;
|
||||
bool isnull;
|
||||
int weight;
|
||||
double randId;
|
||||
public:
|
||||
inline Edge(Node *f,Node *s, int wt=0){
|
||||
first=f;
|
||||
second=s;
|
||||
weight=wt;
|
||||
randId=rand();
|
||||
isnull=false;
|
||||
}
|
||||
|
||||
inline Edge(Node *f,Node *s, int wt, double rd){
|
||||
first=f;
|
||||
second=s;
|
||||
weight=wt;
|
||||
randId=rd;
|
||||
isnull=false;
|
||||
}
|
||||
|
||||
inline Edge() { isnull = true; }
|
||||
inline double getRandId(){ return randId; }
|
||||
inline Node* getFirst() { assert(!isNull()); return first; }
|
||||
inline Node* const getFirst() const { assert(!isNull()); return first; }
|
||||
inline Node* getSecond() { assert(!isNull()); return second; }
|
||||
inline Node* const getSecond() const { assert(!isNull()); return second; }
|
||||
|
||||
inline int getWeight() { assert(!isNull()); return weight; }
|
||||
inline void setWeight(int n) { assert(!isNull()); weight=n; }
|
||||
|
||||
inline void setFirst(Node *&f) { assert(!isNull()); first=f; }
|
||||
inline void setSecond(Node *&s) { assert(!isNull()); second=s; }
|
||||
|
||||
|
||||
inline bool isNull() const { return isnull;}
|
||||
|
||||
inline bool operator<(const Edge& ed) const{
|
||||
// Can't be the same if one is null and the other isn't
|
||||
if (isNull() != ed.isNull())
|
||||
return true;
|
||||
|
||||
return (*first<*(ed.getFirst()))||
|
||||
(*first==*(ed.getFirst()) && *second<*(ed.getSecond()));
|
||||
}
|
||||
|
||||
inline bool operator==(const Edge& ed) const{
|
||||
return !(*this<ed) && !(ed<*this);
|
||||
}
|
||||
|
||||
inline bool operator!=(const Edge& ed) const{return !(*this==ed);}
|
||||
};
|
||||
////////////////////////
|
||||
|
||||
//graphListElement
|
||||
//This forms the "adjacency list element" of a
|
||||
//vertex adjacency list in graph
|
||||
struct graphListElement{
|
||||
Node *element;
|
||||
int weight;
|
||||
double randId;
|
||||
inline graphListElement(Node *n, int w, double rand){
|
||||
element=n;
|
||||
weight=w;
|
||||
randId=rand;
|
||||
}
|
||||
};
|
||||
/////////////////////////
|
||||
|
||||
namespace std {
|
||||
struct less<Node *> : public binary_function<Node *, Node *,bool> {
|
||||
bool operator()(Node *n1, Node *n2) const {
|
||||
return n1->getElement() < n2->getElement();
|
||||
}
|
||||
};
|
||||
|
||||
struct less<Edge> : public binary_function<Edge,Edge,bool> {
|
||||
bool operator()(Edge e1, Edge e2) const {
|
||||
assert(!e1.isNull() && !e2.isNull());
|
||||
|
||||
Node *x1=e1.getFirst();
|
||||
Node *x2=e1.getSecond();
|
||||
Node *y1=e2.getFirst();
|
||||
Node *y2=e2.getSecond();
|
||||
return (*x1<*y1 ||(*x1==*y1 && *x2<*y2));
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
struct BBSort{
|
||||
bool operator()(BasicBlock *BB1, BasicBlock *BB2) const{
|
||||
std::string name1=BB1->getName();
|
||||
std::string name2=BB2->getName();
|
||||
return name1<name2;
|
||||
}
|
||||
};
|
||||
|
||||
struct NodeListSort{
|
||||
bool operator()(graphListElement BB1, graphListElement BB2) const{
|
||||
std::string name1=BB1.element->getElement()->getName();
|
||||
std::string name2=BB2.element->getElement()->getName();
|
||||
return name1<name2;
|
||||
}
|
||||
};
|
||||
struct EdgeCompare{
|
||||
bool operator()(Edge e1, Edge e2) const {
|
||||
assert(!e1.isNull() && !e2.isNull());
|
||||
Node *x1=e1.getFirst();
|
||||
Node *x2=e1.getSecond();
|
||||
Node *y1=e2.getFirst();
|
||||
Node *y2=e2.getSecond();
|
||||
int w1=e1.getWeight();
|
||||
int w2=e2.getWeight();
|
||||
return (*x1<*y1 || (*x1==*y1 && *x2<*y2) || (*x1==*y1 && *x2==*y2 && w1<w2));
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////
|
||||
|
||||
//this is used to color vertices
|
||||
//during DFS
|
||||
enum Color{
|
||||
WHITE,
|
||||
GREY,
|
||||
BLACK
|
||||
};
|
||||
|
||||
|
||||
//For path profiling,
|
||||
//We assume that the graph is connected (which is true for
|
||||
//any method CFG)
|
||||
//We also assume that the graph has single entry and single exit
|
||||
//(For this, we make a pass over the graph that ensures this)
|
||||
//The graph is a construction over any existing graph of BBs
|
||||
//Its a construction "over" existing cfg: with
|
||||
//additional features like edges and weights to edges
|
||||
|
||||
//graph uses adjacency list representation
|
||||
class Graph{
|
||||
public:
|
||||
//typedef std::map<Node*, std::list<graphListElement> > nodeMapTy;
|
||||
typedef std::map<Node*, std::vector<graphListElement> > nodeMapTy;//chng
|
||||
private:
|
||||
//the adjacency list of a vertex or node
|
||||
nodeMapTy nodes;
|
||||
|
||||
//the start or root node
|
||||
Node *strt;
|
||||
|
||||
//the exit node
|
||||
Node *ext;
|
||||
|
||||
//a private method for doing DFS traversal of graph
|
||||
//this is used in determining the reverse topological sort
|
||||
//of the graph
|
||||
void DFS_Visit(Node *nd, std::vector<Node *> &toReturn) const;
|
||||
|
||||
//Its a variation of DFS to get the backedges in the graph
|
||||
//We get back edges by associating a time
|
||||
//and a color with each vertex.
|
||||
//The time of a vertex is the time when it was first visited
|
||||
//The color of a vertex is initially WHITE,
|
||||
//Changes to GREY when it is first visited,
|
||||
//and changes to BLACK when ALL its neighbors
|
||||
//have been visited
|
||||
//So we have a back edge when we meet a successor of
|
||||
//a node with smaller time, and GREY color
|
||||
void getBackEdgesVisit(Node *u,
|
||||
std::vector<Edge > &be,
|
||||
std::map<Node *, Color> &clr,
|
||||
std::map<Node *, int> &d,
|
||||
int &time) const;
|
||||
|
||||
public:
|
||||
typedef nodeMapTy::iterator elementIterator;
|
||||
typedef nodeMapTy::const_iterator constElementIterator;
|
||||
typedef std::vector<graphListElement > nodeList;//chng
|
||||
//typedef std::vector<graphListElement > nodeList;
|
||||
|
||||
//graph constructors
|
||||
|
||||
//empty constructor: then add edges and nodes later on
|
||||
Graph() {}
|
||||
|
||||
//constructor with root and exit node specified
|
||||
Graph(std::vector<Node*> n,
|
||||
std::vector<Edge> e, Node *rt, Node *lt);
|
||||
|
||||
//add a node
|
||||
void addNode(Node *nd);
|
||||
|
||||
//add an edge
|
||||
//this adds an edge ONLY when
|
||||
//the edge to be added doesn not already exist
|
||||
//we "equate" two edges here only with their
|
||||
//end points
|
||||
void addEdge(Edge ed, int w);
|
||||
|
||||
//add an edge EVEN IF such an edge already exists
|
||||
//this may make a multi-graph
|
||||
//which does happen when we add dummy edges
|
||||
//to the graph, for compensating for back-edges
|
||||
void addEdgeForce(Edge ed);
|
||||
|
||||
//set the weight of an edge
|
||||
void setWeight(Edge ed);
|
||||
|
||||
//remove an edge
|
||||
//Note that it removes just one edge,
|
||||
//the first edge that is encountered
|
||||
void removeEdge(Edge ed);
|
||||
|
||||
//remove edge with given wt
|
||||
void removeEdgeWithWt(Edge ed);
|
||||
|
||||
//check whether graph has an edge
|
||||
//having an edge simply means that there is an edge in the graph
|
||||
//which has same endpoints as the given edge
|
||||
//it may possibly have different weight though
|
||||
bool hasEdge(Edge ed) const;
|
||||
|
||||
//check whether graph has an edge, with a given wt
|
||||
bool hasEdgeAndWt(Edge ed) const;
|
||||
|
||||
//get the list of successor nodes
|
||||
std::vector<Node *> getSuccNodes(Node *nd) const;
|
||||
|
||||
//get the number of outgoing edges
|
||||
int getNumberOfOutgoingEdges(Node *nd) const;
|
||||
|
||||
//get the list of predecessor nodes
|
||||
std::vector<Node *> getPredNodes(Node *nd) const;
|
||||
|
||||
|
||||
//to get the no of incoming edges
|
||||
int getNumberOfIncomingEdges(Node *nd) const;
|
||||
|
||||
//get the list of all the vertices in graph
|
||||
std::vector<Node *> getAllNodes() const;
|
||||
std::vector<Node *> getAllNodes();
|
||||
|
||||
//get a list of nodes in the graph
|
||||
//in r-topological sorted order
|
||||
//note that we assumed graph to be connected
|
||||
std::vector<Node *> reverseTopologicalSort() const;
|
||||
|
||||
//reverse the sign of weights on edges
|
||||
//this way, max-spanning tree could be obtained
|
||||
//usin min-spanning tree, and vice versa
|
||||
void reverseWts();
|
||||
|
||||
//Ordinarily, the graph is directional
|
||||
//this converts the graph into an
|
||||
//undirectional graph
|
||||
//This is done by adding an edge
|
||||
//v->u for all existing edges u->v
|
||||
void makeUnDirectional();
|
||||
|
||||
//print graph: for debugging
|
||||
void printGraph();
|
||||
|
||||
//get a vector of back edges in the graph
|
||||
void getBackEdges(std::vector<Edge> &be) const;
|
||||
|
||||
//Get the Maximal spanning tree (also a graph)
|
||||
//of the graph
|
||||
Graph* getMaxSpanningTree();
|
||||
|
||||
//get the nodeList adjacent to a node
|
||||
//a nodeList element contains a node, and the weight
|
||||
//corresponding to the edge for that element
|
||||
inline const nodeList &getNodeList(Node *nd) const {
|
||||
constElementIterator nli = nodes.find(nd);
|
||||
assert(nli != nodes.end() && "Node must be in nodes map");
|
||||
return nli->second;
|
||||
}
|
||||
|
||||
inline nodeList &getNodeList(Node *nd) {
|
||||
elementIterator nli = nodes.find(nd);
|
||||
assert(nli != nodes.end() && "Node must be in nodes map");
|
||||
return nli->second;
|
||||
}
|
||||
|
||||
//get the root of the graph
|
||||
inline Node *getRoot() {return strt; }
|
||||
inline Node * const getRoot() const {return strt; }
|
||||
|
||||
//get exit: we assumed there IS a unique exit :)
|
||||
inline Node *getExit() {return ext; }
|
||||
inline Node * const getExit() const {return ext; }
|
||||
//Check if a given node is the root
|
||||
inline bool isRoot(Node *n) const {return (*n==*strt); }
|
||||
|
||||
//check if a given node is leaf node
|
||||
//here we hv only 1 leaf: which is the exit node
|
||||
inline bool isLeaf(Node *n) const {return (*n==*ext); }
|
||||
};
|
||||
|
||||
//This class is used to generate
|
||||
//"appropriate" code to be inserted
|
||||
//along an edge
|
||||
//The code to be inserted can be of six different types
|
||||
//as given below
|
||||
//1: r=k (where k is some constant)
|
||||
//2: r=0
|
||||
//3: r+=k
|
||||
//4: count[k]++
|
||||
//5: Count[r+k]++
|
||||
//6: Count[r]++
|
||||
class getEdgeCode{
|
||||
private:
|
||||
//cond implies which
|
||||
//"kind" of code is to be inserted
|
||||
//(from 1-6 above)
|
||||
int cond;
|
||||
//inc is the increment: eg k, or 0
|
||||
int inc;
|
||||
|
||||
//A backedge must carry the code
|
||||
//of both incoming "dummy" edge
|
||||
//and outgoing "dummy" edge
|
||||
//If a->b is a backedge
|
||||
//then incoming dummy edge is root->b
|
||||
//and outgoing dummy edge is a->exit
|
||||
|
||||
//incoming dummy edge, if any
|
||||
getEdgeCode *cdIn;
|
||||
|
||||
//outgoing dummy edge, if any
|
||||
getEdgeCode *cdOut;
|
||||
|
||||
public:
|
||||
getEdgeCode(){
|
||||
cdIn=NULL;
|
||||
cdOut=NULL;
|
||||
inc=0;
|
||||
cond=0;
|
||||
}
|
||||
|
||||
//set condition: 1-6
|
||||
inline void setCond(int n) {cond=n;}
|
||||
|
||||
//get the condition
|
||||
inline int getCond() { return cond;}
|
||||
|
||||
//set increment
|
||||
inline void setInc(int n) {inc=n;}
|
||||
|
||||
//get increment
|
||||
inline int getInc() {return inc;}
|
||||
|
||||
//set CdIn (only used for backedges)
|
||||
inline void setCdIn(getEdgeCode *gd){ cdIn=gd;}
|
||||
|
||||
//set CdOut (only used for backedges)
|
||||
inline void setCdOut(getEdgeCode *gd){ cdOut=gd;}
|
||||
|
||||
//get the code to be inserted on the edge
|
||||
//This is determined from cond (1-6)
|
||||
//<<<<<<< Graph.h
|
||||
void getCode(Instruction *a, Instruction *b, Function *M, BasicBlock *BB,
|
||||
int numPaths, int MethNo);
|
||||
//=======
|
||||
//void getCode(Instruction *a, Instruction *b, Function *F, BasicBlock *BB);
|
||||
//>>>>>>> 1.4
|
||||
};
|
||||
|
||||
|
||||
//auxillary functions on graph
|
||||
|
||||
//print a given edge in the form BB1Label->BB2Label
|
||||
void printEdge(Edge ed);
|
||||
|
||||
//Do graph processing: to determine minimal edge increments,
|
||||
//appropriate code insertions etc and insert the code at
|
||||
//appropriate locations
|
||||
void processGraph(Graph &g, Instruction *rInst, Instruction *countInst, std::vector<Edge> &be, std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, int n);
|
||||
|
||||
//print the graph (for debugging)
|
||||
void printGraph(Graph &g);
|
||||
|
||||
|
||||
//void printGraph(const Graph g);
|
||||
//insert a basic block with appropriate code
|
||||
//along a given edge
|
||||
void insertBB(Edge ed, getEdgeCode *edgeCode, Instruction *rInst, Instruction *countInst, int n, int Methno);
|
||||
|
||||
//Insert the initialization code in the top BB
|
||||
//this includes initializing r, and count
|
||||
//r is like an accumulator, that
|
||||
//keeps on adding increments as we traverse along a path
|
||||
//and at the end of the path, r contains the path
|
||||
//number of that path
|
||||
//Count is an array, where Count[k] represents
|
||||
//the number of executions of path k
|
||||
void insertInTopBB(BasicBlock *front, int k, Instruction *rVar, Instruction *countVar);
|
||||
|
||||
//Add dummy edges corresponding to the back edges
|
||||
//If a->b is a backedge
|
||||
//then incoming dummy edge is root->b
|
||||
//and outgoing dummy edge is a->exit
|
||||
void addDummyEdges(std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, Graph &g, std::vector<Edge> &be);
|
||||
|
||||
//Assign a value to all the edges in the graph
|
||||
//such that if we traverse along any path from root to exit, and
|
||||
//add up the edge values, we get a path number that uniquely
|
||||
//refers to the path we travelled
|
||||
int valueAssignmentToEdges(Graph& g);
|
||||
|
||||
void getBBtrace(std::vector<BasicBlock *> &vBB, int pathNo, Function *M);
|
||||
#endif
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user