Complete rewrite of the code that merges DS graphs for equivalence classes

of functions called at a common call site.  The rewrite inlines the
resulting graphs bottom-up on the SCCs of the CBU call graph.  It also
simplifies the merging of equivalence classes by exploiting the fact that
functions in non-trivial SCCs are already merged.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13645 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2004-05-23 07:54:02 +00:00
parent 44860ccaf2
commit c5204fb6f8
2 changed files with 604 additions and 0 deletions

View File

@ -0,0 +1,176 @@
//===-- EquivClassGraphs.h - Merge equiv-class graphs & inline bottom-up --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is the same as the complete bottom-up graphs, but
// with functions partitioned into equivalence classes and a single merged
// DS graph for all functions in an equivalence class. After this merging,
// graphs are inlined bottom-up on the SCCs of the final (CBU) call graph.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DSGraph.h"
#include "Support/EquivalenceClasses.h"
#include "Support/STLExtras.h"
#include <vector>
#include <map>
#include <ext/hash_map>
namespace llvm {
class Module;
class Function;
namespace PA {
/// EquivClassGraphArgsInfo - Information about the set of argument nodes
/// in a DS graph (the number of argument nodes is the max of argument nodes
/// for all functions folded into the graph).
/// FIXME: This class is only used temporarily and could be eliminated.
///
struct EquivClassGraphArgsInfo {
const DSGraph* ECGraph;
std::vector<DSNodeHandle> argNodes;
EquivClassGraphArgsInfo() : ECGraph(NULL) {}
};
/// EquivClassGraphs - This is the same as the complete bottom-up graphs, but
/// with functions partitioned into equivalence classes and a single merged
/// DS graph for all functions in an equivalence class. After this merging,
/// graphs are inlined bottom-up on the SCCs of the final (CBU) call graph.
///
struct EquivClassGraphs : public Pass {
CompleteBUDataStructures *CBU;
// FoldedGraphsMap, one graph for each function
hash_map<const Function*, DSGraph*> FoldedGraphsMap;
// Equivalence class where functions that can potentially be called via the
// same function pointer are in the same class.
EquivalenceClasses<Function*> FuncECs;
// Each equivalence class graph contains several functions.
// Remember their argument nodes (and return nodes?)
std::map<const DSGraph*, EquivClassGraphArgsInfo> ECGraphInfo;
/// OneCalledFunction - For each indirect call, we keep track of one
/// target of the call. This is used to find equivalence class called by
/// a call site.
std::map<DSNode*, Function *> OneCalledFunction;
public:
/// EquivClassGraphs - Computes the equivalence classes and then the
/// folded DS graphs for each class.
///
virtual bool run(Module &M) { computeFoldedGraphs(M); return true; }
/// getCBUDataStructures - Get the CompleteBUDataStructures object
///
CompleteBUDataStructures *getCBUDataStructures() { return CBU; }
/// getDSGraph - Return the data structure graph for the specified function.
/// This returns the folded graph. The folded graph is the same as the CBU
/// graph iff the function is in a singleton equivalence class AND all its
/// callees also have the same folded graph as the CBU graph.
///
DSGraph &getDSGraph(const Function &F) const {
hash_map<const Function*, DSGraph*>::const_iterator I =
FoldedGraphsMap.find(const_cast<Function*>(&F));
assert(I != FoldedGraphsMap.end() && "No folded graph for function!");
return *I->second;
}
/// getSomeCalleeForCallSite - Return any one callee function at
/// a call site.
///
Function *getSomeCalleeForCallSite(const CallSite &CS) const;
/// getDSGraphForCallSite - Return the common data structure graph for
/// callees at the specified call site.
///
DSGraph &getDSGraphForCallSite(const CallSite &CS) const {
return this->getDSGraph(*getSomeCalleeForCallSite(CS));
}
/// getEquivClassForCallSite - Get the set of functions in the equivalence
/// class for a given call site.
///
const std::set<Function*>& getEquivClassForCallSite(const CallSite& CS) {
Function* leaderF = FuncECs.findClass(getSomeCalleeForCallSite(CS));
return FuncECs.getEqClass(leaderF);
}
/// getECGraphInfo - Get the graph info object with arg nodes info
///
EquivClassGraphArgsInfo &getECGraphInfo(const DSGraph* G) {
assert(G != NULL && "getECGraphInfo: Null graph!");
EquivClassGraphArgsInfo& GraphInfo = ECGraphInfo[G];
if (GraphInfo.ECGraph == NULL)
GraphInfo.ECGraph = G;
return GraphInfo;
}
/// sameAsCBUGraph - Check if the folded graph for this function is
/// the same as the CBU graph.
bool sameAsCBUGraph(const Function &F) const {
DSGraph& foldedGraph = getDSGraph(F);
return (&foldedGraph == &CBU->getDSGraph(F));
}
DSGraph &getGlobalsGraph() const {
return CBU->getGlobalsGraph();
}
typedef llvm::BUDataStructures::ActualCalleesTy ActualCalleesTy;
const ActualCalleesTy &getActualCallees() const {
return CBU->getActualCallees();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<CompleteBUDataStructures>();
}
/// print - Print out the analysis results...
///
void print(std::ostream &O, const Module *M) const { CBU->print(O, M); }
private:
void computeFoldedGraphs(Module &M);
void buildIndirectFunctionSets(Module &M);
unsigned processSCC(DSGraph &FG, Function &F, std::vector<Function*> &Stack,
unsigned &NextID,
hash_map<Function*, unsigned> &ValMap);
void processGraph(DSGraph &FG, Function &F);
DSGraph &getOrCreateGraph(Function &F);
DSGraph* cloneGraph(Function &F);
bool hasFoldedGraph(const Function& F) const {
hash_map<const Function*, DSGraph*>::const_iterator I =
FoldedGraphsMap.find(const_cast<Function*>(&F));
return (I != FoldedGraphsMap.end());
}
DSGraph* getOrCreateLeaderGraph(const Function& leader) {
DSGraph*& leaderGraph = FoldedGraphsMap[&leader];
if (leaderGraph == NULL)
leaderGraph = new DSGraph(CBU->getGlobalsGraph().getTargetData());
return leaderGraph;
}
};
}; // end PA namespace
}; // end llvm namespace

View File

@ -0,0 +1,428 @@
//===- EquivClassGraphs.cpp - Merge equiv-class graphs & inline bottom-up -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is the same as the complete bottom-up graphs, but
// with functions partitioned into equivalence classes and a single merged
// DS graph for all functions in an equivalence class. After this merging,
// graphs are inlined bottom-up on the SCCs of the final (CBU) call graph.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ECGraphs"
#include "EquivClassGraphs.h"
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Support/CallSite.h"
#include "Support/Debug.h"
#include "Support/SCCIterator.h"
#include "Support/Statistic.h"
#include "Support/EquivalenceClasses.h"
#include "Support/STLExtras.h"
using namespace llvm;
namespace llvm {
namespace PA {
Statistic<> NumFoldGraphInlines("Inline equiv-class graphs bottom up",
"Number of graphs inlined");
} // End PA namespace
} // End llvm namespace
namespace {
RegisterAnalysis<llvm::PA::EquivClassGraphs> X("equivdatastructure",
"Equivalence-class Bottom-up Data Structure Analysis");
Statistic<> NumEquivBUInlines("equivdatastructures", "Number of graphs inlined");
}
// getDSGraphForCallSite - Return the common data structure graph for
// callees at the specified call site.
//
Function *llvm::PA::EquivClassGraphs::getSomeCalleeForCallSite(const CallSite &CS) const {
Function *thisFunc = CS.getCaller();
assert(thisFunc && "getDSGraphForCallSite(): Not a valid call site?");
DSNode *calleeNode = CBU->getDSGraph(*thisFunc).
getNodeForValue(CS.getCalledValue()).getNode();
std::map<DSNode*, Function *>::const_iterator I =
OneCalledFunction.find(calleeNode);
return (I == OneCalledFunction.end())? NULL : I->second;
}
// computeFoldedGraphs - Calculate the bottom up data structure
// graphs for each function in the program.
//
void llvm::PA::EquivClassGraphs::computeFoldedGraphs(Module &M) {
CBU = &getAnalysis<CompleteBUDataStructures>();
// Find equivalence classes of functions called from common call sites.
// Fold the CBU graphs for all functions in an equivalence class.
buildIndirectFunctionSets(M);
// Stack of functions used for Tarjan's SCC-finding algorithm.
std::vector<Function*> Stack;
hash_map<Function*, unsigned> ValMap;
unsigned NextID = 1;
if (Function *Main = M.getMainFunction()) {
if (!Main->isExternal())
processSCC(getOrCreateGraph(*Main), *Main, Stack, NextID, ValMap);
} else {
std::cerr << "Fold Graphs: No 'main' function found!\n";
}
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal() && !FoldedGraphsMap.count(I))
processSCC(getOrCreateGraph(*I), *I, Stack, NextID, ValMap);
getGlobalsGraph().removeTriviallyDeadNodes();
}
// buildIndirectFunctionSets - Iterate over the module looking for indirect
// calls to functions. If a call site can invoke any functions [F1, F2... FN],
// unify the N functions together in the FuncECs set.
//
void llvm::PA::EquivClassGraphs::buildIndirectFunctionSets(Module &M) {
const ActualCalleesTy& AC = CBU->getActualCallees();
// Loop over all of the indirect calls in the program. If a call site can
// call multiple different functions, we need to unify all of the callees into
// the same equivalence class.
Instruction *LastInst = 0;
Function *FirstFunc = 0;
for (ActualCalleesTy::const_iterator I=AC.begin(), E=AC.end(); I != E; ++I) {
if (I->second->isExternal())
continue; // Ignore functions we cannot modify
CallSite CS = CallSite::get(I->first);
if (CS.getCalledFunction()) { // Direct call:
FuncECs.addElement(I->second); // -- Make sure function has equiv class
FirstFunc = I->second; // -- First callee at this site
} else { // Else indirect call
// DEBUG(std::cerr << "CALLEE: " << I->second->getName()
// << " from : " << I->first);
if (I->first != LastInst) {
// This is the first callee from this call site.
LastInst = I->first;
FirstFunc = I->second;
// Instead of storing the lastInst For Indirection call Sites we store
// the DSNode for the function ptr arguemnt
Function *thisFunc = LastInst->getParent()->getParent();
DSNode *calleeNode = CBU->getDSGraph(*thisFunc).getNodeForValue(CS.getCalledValue()).getNode();
OneCalledFunction[calleeNode] = FirstFunc;
FuncECs.addElement(I->second);
} else {
// This is not the first possible callee from a particular call site.
// Union the callee in with the other functions.
FuncECs.unionSetsWith(FirstFunc, I->second);
#ifndef NDEBUG
Function *thisFunc = LastInst->getParent()->getParent();
DSNode *calleeNode = CBU->getDSGraph(*thisFunc).getNodeForValue(CS.getCalledValue()).getNode();
assert(OneCalledFunction.count(calleeNode) > 0 && "Missed a call?");
#endif
}
}
// Now include all functions that share a graph with any function in the
// equivalence class. More precisely, if F is in the class, and G(F) is
// its graph, then we include all other functions that are also in G(F).
// Currently, that is just the functions in the same call-graph-SCC as F.
//
DSGraph& funcDSGraph = CBU->getDSGraph(*I->second);
const DSGraph::ReturnNodesTy &RetNodes = funcDSGraph.getReturnNodes();
for (DSGraph::ReturnNodesTy::const_iterator RI=RetNodes.begin(),
RE=RetNodes.end(); RI != RE; ++RI)
FuncECs.unionSetsWith(FirstFunc, RI->first);
}
// Now that all of the equivalences have been built, merge the graphs for
// each equivalence class.
//
std::set<Function*> &leaderSet = FuncECs.getLeaderSet();
DEBUG(std::cerr << "\nIndirect Function Equivalence Sets:\n");
for (std::set<Function*>::iterator LI = leaderSet.begin(),
LE = leaderSet.end(); LI != LE; ++LI) {
Function* LF = *LI;
const std::set<Function*>& EqClass = FuncECs.getEqClass(LF);
#ifndef NDEBUG
if (EqClass.size() > 1) {
DEBUG(std::cerr <<" Equivalence set for leader " <<LF->getName()<<" = ");
for (std::set<Function*>::const_iterator EqI = EqClass.begin(),
EqEnd = EqClass.end(); EqI != EqEnd; ++EqI)
DEBUG(std::cerr << " " << (*EqI)->getName() << ",");
DEBUG(std::cerr << "\n");
}
#endif
if (EqClass.size() > 1) {
// This equiv class has multiple functions: merge their graphs.
// First, clone the CBU graph for the leader and make it the
// common graph for the equivalence graph.
DSGraph* mergedG = cloneGraph(*LF);
// Record the argument nodes for use in merging later below
EquivClassGraphArgsInfo& GraphInfo = getECGraphInfo(mergedG);
for (Function::aiterator AI1 = LF->abegin(); AI1 != LF->aend(); ++AI1)
GraphInfo.argNodes.push_back(mergedG->getNodeForValue(AI1));
// Merge in the graphs of all other functions in this equiv. class.
// Note that two or more functions may have the same graph, and it
// only needs to be merged in once. Use a set to find repetitions.
std::set<DSGraph*> GraphsMerged;
for (std::set<Function*>::const_iterator EqI = EqClass.begin(),
EqEnd = EqClass.end(); EqI != EqEnd; ++EqI) {
Function* F = *EqI;
DSGraph*& FG = FoldedGraphsMap[F];
if (F == LF || FG == mergedG)
continue;
// Record the "folded" graph for the function.
FG = mergedG;
// Clone this member of the equivalence class into mergedG
DSGraph* CBUGraph = &CBU->getDSGraph(*F);
if (GraphsMerged.count(CBUGraph) > 0)
continue;
GraphsMerged.insert(CBUGraph);
DSGraph::NodeMapTy NodeMap;
mergedG->cloneInto(*CBUGraph, mergedG->getScalarMap(),
mergedG->getReturnNodes(), NodeMap, 0);
// Merge the return nodes of all functions together.
mergedG->getReturnNodes()[LF].mergeWith(mergedG->getReturnNodes()[F]);
// Merge the function arguments with all argument nodes found so far.
// If there are extra function args, add them to the vector of argNodes
Function::aiterator AI2 = F->abegin(), AI2end = F->aend();
for (unsigned arg=0, numArgs=GraphInfo.argNodes.size();
arg < numArgs && AI2 != AI2end; ++AI2, ++arg)
GraphInfo.argNodes[arg].mergeWith(mergedG->getNodeForValue(AI2));
for ( ; AI2 != AI2end; ++AI2)
GraphInfo.argNodes.push_back(mergedG->getNodeForValue(AI2));
}
}
}
DEBUG(std::cerr << "\n");
}
DSGraph &llvm::PA::EquivClassGraphs::getOrCreateGraph(Function &F) {
// Has the graph already been created?
DSGraph *&Graph = FoldedGraphsMap[&F];
if (Graph) return *Graph;
// Use the CBU graph directly without copying it.
// This automatically updates the FoldedGraphsMap via the reference.
Graph = &CBU->getDSGraph(F);
return *Graph;
}
DSGraph* llvm::PA::EquivClassGraphs::cloneGraph(Function &F) {
DSGraph *&Graph = FoldedGraphsMap[&F];
DSGraph &CBUGraph = CBU->getDSGraph(F);
assert(Graph == NULL || Graph == &CBUGraph && "Cloning a graph twice?");
// Copy the CBU graph...
Graph = new DSGraph(CBUGraph); // updates the map via reference
Graph->setGlobalsGraph(&getGlobalsGraph());
Graph->setPrintAuxCalls();
// Make sure to update the FoldedGraphsMap map for all functions in the graph!
for (DSGraph::ReturnNodesTy::iterator I = Graph->getReturnNodes().begin();
I != Graph->getReturnNodes().end(); ++I)
if (I->first != &F) {
DSGraph*& FG = FoldedGraphsMap[I->first];
assert(FG == NULL || FG == &CBU->getDSGraph(*I->first) &&
"Merging function in SCC twice?");
FG = Graph;
}
return Graph;
}
unsigned llvm::PA::EquivClassGraphs::processSCC(DSGraph &FG, Function& F,
std::vector<Function*> &Stack,
unsigned &NextID,
hash_map<Function*, unsigned> &ValMap) {
DEBUG(std::cerr << " ProcessSCC for function " << F.getName() << "\n");
assert(!ValMap.count(&F) && "Shouldn't revisit functions!");
unsigned Min = NextID++, MyID = Min;
ValMap[&F] = Min;
Stack.push_back(&F);
// The edges out of the current node are the call site targets...
for (unsigned i = 0, e = FG.getFunctionCalls().size(); i != e; ++i) {
Instruction *Call = FG.getFunctionCalls()[i].getCallSite().getInstruction();
// Loop over all of the actually called functions...
ActualCalleesTy::const_iterator I, E;
for (tie(I, E) = getActualCallees().equal_range(Call); I != E; ++I)
if (!I->second->isExternal()) {
DSGraph &CalleeG = getOrCreateGraph(*I->second);
// Have we visited the destination function yet?
hash_map<Function*, unsigned>::iterator It = ValMap.find(I->second);
unsigned M = (It == ValMap.end()) // No, visit it now.
? processSCC(CalleeG, *I->second, Stack, NextID, ValMap)
: It->second; // Yes, get it's number.
if (M < Min) Min = M;
}
}
assert(ValMap[&F] == MyID && "SCC construction assumption wrong!");
if (Min != MyID)
return Min; // This is part of a larger SCC!
// If this is a new SCC, process it now.
bool IsMultiNodeSCC = false;
while (Stack.back() != &F) {
DSGraph *NG = &getOrCreateGraph(* Stack.back());
ValMap[Stack.back()] = ~0U;
// Since all SCCs must be the same as those found in CBU, we do not need to
// do any merging. Make sure all functions in the SCC share the same graph.
assert(NG == &FG &&
"FoldGraphs: Functions in the same SCC have different graphs?");
Stack.pop_back();
IsMultiNodeSCC = true;
}
// Clean up the graph before we start inlining a bunch again...
if (IsMultiNodeSCC)
FG.removeTriviallyDeadNodes();
Stack.pop_back();
processGraph(FG, F);
ValMap[&F] = ~0U;
return MyID;
}
/// processGraph - Process the CBU graphs for the program in bottom-up order on
/// the SCC of the __ACTUAL__ call graph. This builds final folded CBU graphs.
void llvm::PA::EquivClassGraphs::processGraph(DSGraph &G, Function& F) {
DEBUG(std::cerr << " ProcessGraph for function " << F.getName() << "\n");
hash_set<Instruction*> calls;
DSGraph* CallerGraph = sameAsCBUGraph(F)? NULL : &getOrCreateGraph(F);
// If the function has not yet been cloned, let's check if any callees
// need to be inlined before cloning it.
//
for (unsigned i=0, e=G.getFunctionCalls().size(); i!=e && !CallerGraph; ++i) {
const DSCallSite &CS = G.getFunctionCalls()[i];
Instruction *TheCall = CS.getCallSite().getInstruction();
// Loop over all potential callees to find the first non-external callee.
// Some inlining is needed if there is such a callee and it has changed.
ActualCalleesTy::const_iterator I, E;
for (tie(I, E) = getActualCallees().equal_range(TheCall); I != E; ++I)
if (!I->second->isExternal() && !sameAsCBUGraph(*I->second)) {
// Ok, the caller does need to be cloned... go ahead and do it now.
// clone the CBU graph for F now because we have not cloned it so far
CallerGraph = cloneGraph(F);
break;
}
}
if (!CallerGraph) { // No inlining is needed.
DEBUG(std::cerr << " --DONE ProcessGraph for function " << F.getName()
<< " (NO INLINING NEEDED)\n");
return;
}
// Else we need to inline some callee graph. Visit all call sites.
// The edges out of the current node are the call site targets...
for (unsigned i=0, e = CallerGraph->getFunctionCalls().size(); i != e; ++i) {
const DSCallSite &CS = CallerGraph->getFunctionCalls()[i];
Instruction *TheCall = CS.getCallSite().getInstruction();
assert(calls.insert(TheCall).second &&
"Call instruction occurs multiple times in graph??");
// Inline the common callee graph into the current graph, if the callee
// graph has not changed. Note that all callees should have the same
// graph so we only need to do this once.
//
DSGraph* CalleeGraph = NULL;
ActualCalleesTy::const_iterator I, E;
tie(I, E) = getActualCallees().equal_range(TheCall);
unsigned TNum, Num;
// Loop over all potential callees to find the first non-external callee.
for (TNum = 0, Num = std::distance(I, E); I != E; ++I, ++TNum)
if (!I->second->isExternal())
break;
// Now check if the graph has changed and if so, clone and inline it.
if (I != E && !sameAsCBUGraph(*I->second)) {
Function *CalleeFunc = I->second;
// Merge the callee's graph into this graph, if not already the same.
// Callees in the same equivalence class (which subsumes those
// in the same SCCs) have the same graph. Note that all recursion
// including self-recursion have been folded in the equiv classes.
//
CalleeGraph = &getOrCreateGraph(*CalleeFunc);
if (CalleeGraph != CallerGraph) {
++NumFoldGraphInlines;
CallerGraph->mergeInGraph(CS, *CalleeFunc, *CalleeGraph,
DSGraph::KeepModRefBits |
DSGraph::StripAllocaBit |
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
DEBUG(std::cerr << " Inlining graph [" << i << "/" << e-1
<< ":" << TNum << "/" << Num-1 << "] for "
<< CalleeFunc->getName() << "["
<< CalleeGraph->getGraphSize() << "+"
<< CalleeGraph->getAuxFunctionCalls().size()
<< "] into '" /*<< CallerGraph->getFunctionNames()*/ << "' ["
<< CallerGraph->getGraphSize() << "+"
<< CallerGraph->getAuxFunctionCalls().size()
<< "]\n");
}
}
#ifndef NDEBUG
// Now loop over the rest of the callees and make sure they have the
// same graph as the one inlined above.
if (CalleeGraph)
for (++I, ++TNum; I != E; ++I, ++TNum)
if (!I->second->isExternal())
assert(CalleeGraph == &getOrCreateGraph(*I->second) &&
"Callees at a call site have different graphs?");
#endif
}
// Recompute the Incomplete markers
if (CallerGraph != NULL) {
assert(CallerGraph->getInlinedGlobals().empty());
CallerGraph->maskIncompleteMarkers();
CallerGraph->markIncompleteNodes(DSGraph::MarkFormalArgs);
// Delete dead nodes. Treat globals that are unreachable but that can
// reach live nodes as live.
CallerGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
}
DEBUG(std::cerr << " --DONE ProcessGraph for function " << F.getName() << "\n");
}