mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
split select out to its own file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92687 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
8d9b8d717e
commit
c6334b97e1
@ -4,6 +4,7 @@ add_llvm_library(LLVMInstCombine
|
||||
InstCombineCompares.cpp
|
||||
InstCombineLoadStoreAlloca.cpp
|
||||
InstCombinePHI.cpp
|
||||
InstCombineSelect.cpp
|
||||
InstCombineSimplifyDemanded.cpp
|
||||
InstCombineVectorOps.cpp
|
||||
)
|
||||
|
708
lib/Transforms/InstCombine/InstCombineSelect.cpp
Normal file
708
lib/Transforms/InstCombine/InstCombineSelect.cpp
Normal file
@ -0,0 +1,708 @@
|
||||
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the visit functions for load, store and alloca.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "InstCombine.h"
|
||||
//#include "llvm/IntrinsicInst.h"
|
||||
//#include "llvm/Target/TargetData.h"
|
||||
//#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
//#include "llvm/Transforms/Utils/Local.h"
|
||||
//#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Support/PatternMatch.h"
|
||||
using namespace llvm;
|
||||
using namespace PatternMatch;
|
||||
|
||||
/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
|
||||
/// returning the kind and providing the out parameter results if we
|
||||
/// successfully match.
|
||||
static SelectPatternFlavor
|
||||
MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
|
||||
SelectInst *SI = dyn_cast<SelectInst>(V);
|
||||
if (SI == 0) return SPF_UNKNOWN;
|
||||
|
||||
ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
|
||||
if (ICI == 0) return SPF_UNKNOWN;
|
||||
|
||||
LHS = ICI->getOperand(0);
|
||||
RHS = ICI->getOperand(1);
|
||||
|
||||
// (icmp X, Y) ? X : Y
|
||||
if (SI->getTrueValue() == ICI->getOperand(0) &&
|
||||
SI->getFalseValue() == ICI->getOperand(1)) {
|
||||
switch (ICI->getPredicate()) {
|
||||
default: return SPF_UNKNOWN; // Equality.
|
||||
case ICmpInst::ICMP_UGT:
|
||||
case ICmpInst::ICMP_UGE: return SPF_UMAX;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
case ICmpInst::ICMP_SGE: return SPF_SMAX;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
case ICmpInst::ICMP_ULE: return SPF_UMIN;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
case ICmpInst::ICMP_SLE: return SPF_SMIN;
|
||||
}
|
||||
}
|
||||
|
||||
// (icmp X, Y) ? Y : X
|
||||
if (SI->getTrueValue() == ICI->getOperand(1) &&
|
||||
SI->getFalseValue() == ICI->getOperand(0)) {
|
||||
switch (ICI->getPredicate()) {
|
||||
default: return SPF_UNKNOWN; // Equality.
|
||||
case ICmpInst::ICMP_UGT:
|
||||
case ICmpInst::ICMP_UGE: return SPF_UMIN;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
case ICmpInst::ICMP_SGE: return SPF_SMIN;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
case ICmpInst::ICMP_ULE: return SPF_UMAX;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
case ICmpInst::ICMP_SLE: return SPF_SMAX;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
|
||||
|
||||
return SPF_UNKNOWN;
|
||||
}
|
||||
|
||||
|
||||
/// GetSelectFoldableOperands - We want to turn code that looks like this:
|
||||
/// %C = or %A, %B
|
||||
/// %D = select %cond, %C, %A
|
||||
/// into:
|
||||
/// %C = select %cond, %B, 0
|
||||
/// %D = or %A, %C
|
||||
///
|
||||
/// Assuming that the specified instruction is an operand to the select, return
|
||||
/// a bitmask indicating which operands of this instruction are foldable if they
|
||||
/// equal the other incoming value of the select.
|
||||
///
|
||||
static unsigned GetSelectFoldableOperands(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
case Instruction::Mul:
|
||||
case Instruction::And:
|
||||
case Instruction::Or:
|
||||
case Instruction::Xor:
|
||||
return 3; // Can fold through either operand.
|
||||
case Instruction::Sub: // Can only fold on the amount subtracted.
|
||||
case Instruction::Shl: // Can only fold on the shift amount.
|
||||
case Instruction::LShr:
|
||||
case Instruction::AShr:
|
||||
return 1;
|
||||
default:
|
||||
return 0; // Cannot fold
|
||||
}
|
||||
}
|
||||
|
||||
/// GetSelectFoldableConstant - For the same transformation as the previous
|
||||
/// function, return the identity constant that goes into the select.
|
||||
static Constant *GetSelectFoldableConstant(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
default: llvm_unreachable("This cannot happen!");
|
||||
case Instruction::Add:
|
||||
case Instruction::Sub:
|
||||
case Instruction::Or:
|
||||
case Instruction::Xor:
|
||||
case Instruction::Shl:
|
||||
case Instruction::LShr:
|
||||
case Instruction::AShr:
|
||||
return Constant::getNullValue(I->getType());
|
||||
case Instruction::And:
|
||||
return Constant::getAllOnesValue(I->getType());
|
||||
case Instruction::Mul:
|
||||
return ConstantInt::get(I->getType(), 1);
|
||||
}
|
||||
}
|
||||
|
||||
/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
|
||||
/// have the same opcode and only one use each. Try to simplify this.
|
||||
Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
|
||||
Instruction *FI) {
|
||||
if (TI->getNumOperands() == 1) {
|
||||
// If this is a non-volatile load or a cast from the same type,
|
||||
// merge.
|
||||
if (TI->isCast()) {
|
||||
if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
|
||||
return 0;
|
||||
} else {
|
||||
return 0; // unknown unary op.
|
||||
}
|
||||
|
||||
// Fold this by inserting a select from the input values.
|
||||
SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
|
||||
FI->getOperand(0), SI.getName()+".v");
|
||||
InsertNewInstBefore(NewSI, SI);
|
||||
return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
|
||||
TI->getType());
|
||||
}
|
||||
|
||||
// Only handle binary operators here.
|
||||
if (!isa<BinaryOperator>(TI))
|
||||
return 0;
|
||||
|
||||
// Figure out if the operations have any operands in common.
|
||||
Value *MatchOp, *OtherOpT, *OtherOpF;
|
||||
bool MatchIsOpZero;
|
||||
if (TI->getOperand(0) == FI->getOperand(0)) {
|
||||
MatchOp = TI->getOperand(0);
|
||||
OtherOpT = TI->getOperand(1);
|
||||
OtherOpF = FI->getOperand(1);
|
||||
MatchIsOpZero = true;
|
||||
} else if (TI->getOperand(1) == FI->getOperand(1)) {
|
||||
MatchOp = TI->getOperand(1);
|
||||
OtherOpT = TI->getOperand(0);
|
||||
OtherOpF = FI->getOperand(0);
|
||||
MatchIsOpZero = false;
|
||||
} else if (!TI->isCommutative()) {
|
||||
return 0;
|
||||
} else if (TI->getOperand(0) == FI->getOperand(1)) {
|
||||
MatchOp = TI->getOperand(0);
|
||||
OtherOpT = TI->getOperand(1);
|
||||
OtherOpF = FI->getOperand(0);
|
||||
MatchIsOpZero = true;
|
||||
} else if (TI->getOperand(1) == FI->getOperand(0)) {
|
||||
MatchOp = TI->getOperand(1);
|
||||
OtherOpT = TI->getOperand(0);
|
||||
OtherOpF = FI->getOperand(1);
|
||||
MatchIsOpZero = true;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// If we reach here, they do have operations in common.
|
||||
SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
|
||||
OtherOpF, SI.getName()+".v");
|
||||
InsertNewInstBefore(NewSI, SI);
|
||||
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
|
||||
if (MatchIsOpZero)
|
||||
return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
|
||||
else
|
||||
return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
|
||||
}
|
||||
llvm_unreachable("Shouldn't get here");
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool isSelect01(Constant *C1, Constant *C2) {
|
||||
ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
|
||||
if (!C1I)
|
||||
return false;
|
||||
ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
|
||||
if (!C2I)
|
||||
return false;
|
||||
return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
|
||||
}
|
||||
|
||||
/// FoldSelectIntoOp - Try fold the select into one of the operands to
|
||||
/// facilitate further optimization.
|
||||
Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
|
||||
Value *FalseVal) {
|
||||
// See the comment above GetSelectFoldableOperands for a description of the
|
||||
// transformation we are doing here.
|
||||
if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
|
||||
if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
|
||||
!isa<Constant>(FalseVal)) {
|
||||
if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
|
||||
unsigned OpToFold = 0;
|
||||
if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
|
||||
OpToFold = 1;
|
||||
} else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
|
||||
OpToFold = 2;
|
||||
}
|
||||
|
||||
if (OpToFold) {
|
||||
Constant *C = GetSelectFoldableConstant(TVI);
|
||||
Value *OOp = TVI->getOperand(2-OpToFold);
|
||||
// Avoid creating select between 2 constants unless it's selecting
|
||||
// between 0 and 1.
|
||||
if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
|
||||
Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
|
||||
InsertNewInstBefore(NewSel, SI);
|
||||
NewSel->takeName(TVI);
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
|
||||
return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
|
||||
llvm_unreachable("Unknown instruction!!");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
|
||||
if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
|
||||
!isa<Constant>(TrueVal)) {
|
||||
if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
|
||||
unsigned OpToFold = 0;
|
||||
if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
|
||||
OpToFold = 1;
|
||||
} else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
|
||||
OpToFold = 2;
|
||||
}
|
||||
|
||||
if (OpToFold) {
|
||||
Constant *C = GetSelectFoldableConstant(FVI);
|
||||
Value *OOp = FVI->getOperand(2-OpToFold);
|
||||
// Avoid creating select between 2 constants unless it's selecting
|
||||
// between 0 and 1.
|
||||
if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
|
||||
Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
|
||||
InsertNewInstBefore(NewSel, SI);
|
||||
NewSel->takeName(FVI);
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
|
||||
return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
|
||||
llvm_unreachable("Unknown instruction!!");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// visitSelectInstWithICmp - Visit a SelectInst that has an
|
||||
/// ICmpInst as its first operand.
|
||||
///
|
||||
Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
|
||||
ICmpInst *ICI) {
|
||||
bool Changed = false;
|
||||
ICmpInst::Predicate Pred = ICI->getPredicate();
|
||||
Value *CmpLHS = ICI->getOperand(0);
|
||||
Value *CmpRHS = ICI->getOperand(1);
|
||||
Value *TrueVal = SI.getTrueValue();
|
||||
Value *FalseVal = SI.getFalseValue();
|
||||
|
||||
// Check cases where the comparison is with a constant that
|
||||
// can be adjusted to fit the min/max idiom. We may edit ICI in
|
||||
// place here, so make sure the select is the only user.
|
||||
if (ICI->hasOneUse())
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
|
||||
switch (Pred) {
|
||||
default: break;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
case ICmpInst::ICMP_SLT: {
|
||||
// X < MIN ? T : F --> F
|
||||
if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
// X < C ? X : C-1 --> X > C-1 ? C-1 : X
|
||||
Constant *AdjustedRHS =
|
||||
ConstantInt::get(CI->getContext(), CI->getValue()-1);
|
||||
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
|
||||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
|
||||
Pred = ICmpInst::getSwappedPredicate(Pred);
|
||||
CmpRHS = AdjustedRHS;
|
||||
std::swap(FalseVal, TrueVal);
|
||||
ICI->setPredicate(Pred);
|
||||
ICI->setOperand(1, CmpRHS);
|
||||
SI.setOperand(1, TrueVal);
|
||||
SI.setOperand(2, FalseVal);
|
||||
Changed = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_UGT:
|
||||
case ICmpInst::ICMP_SGT: {
|
||||
// X > MAX ? T : F --> F
|
||||
if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
// X > C ? X : C+1 --> X < C+1 ? C+1 : X
|
||||
Constant *AdjustedRHS =
|
||||
ConstantInt::get(CI->getContext(), CI->getValue()+1);
|
||||
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
|
||||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
|
||||
Pred = ICmpInst::getSwappedPredicate(Pred);
|
||||
CmpRHS = AdjustedRHS;
|
||||
std::swap(FalseVal, TrueVal);
|
||||
ICI->setPredicate(Pred);
|
||||
ICI->setOperand(1, CmpRHS);
|
||||
SI.setOperand(1, TrueVal);
|
||||
SI.setOperand(2, FalseVal);
|
||||
Changed = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
|
||||
// (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
|
||||
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
|
||||
if (match(TrueVal, m_ConstantInt<-1>()) &&
|
||||
match(FalseVal, m_ConstantInt<0>()))
|
||||
Pred = ICI->getPredicate();
|
||||
else if (match(TrueVal, m_ConstantInt<0>()) &&
|
||||
match(FalseVal, m_ConstantInt<-1>()))
|
||||
Pred = CmpInst::getInversePredicate(ICI->getPredicate());
|
||||
|
||||
if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
|
||||
// If we are just checking for a icmp eq of a single bit and zext'ing it
|
||||
// to an integer, then shift the bit to the appropriate place and then
|
||||
// cast to integer to avoid the comparison.
|
||||
const APInt &Op1CV = CI->getValue();
|
||||
|
||||
// sext (x <s 0) to i32 --> x>>s31 true if signbit set.
|
||||
// sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
|
||||
if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
|
||||
(Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
|
||||
Value *In = ICI->getOperand(0);
|
||||
Value *Sh = ConstantInt::get(In->getType(),
|
||||
In->getType()->getScalarSizeInBits()-1);
|
||||
In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
|
||||
In->getName()+".lobit"),
|
||||
*ICI);
|
||||
if (In->getType() != SI.getType())
|
||||
In = CastInst::CreateIntegerCast(In, SI.getType(),
|
||||
true/*SExt*/, "tmp", ICI);
|
||||
|
||||
if (Pred == ICmpInst::ICMP_SGT)
|
||||
In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
|
||||
In->getName()+".not"), *ICI);
|
||||
|
||||
return ReplaceInstUsesWith(SI, In);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
|
||||
// Transform (X == Y) ? X : Y -> Y
|
||||
if (Pred == ICmpInst::ICMP_EQ)
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
// Transform (X != Y) ? X : Y -> X
|
||||
if (Pred == ICmpInst::ICMP_NE)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
/// NOTE: if we wanted to, this is where to detect integer MIN/MAX
|
||||
|
||||
} else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
|
||||
// Transform (X == Y) ? Y : X -> X
|
||||
if (Pred == ICmpInst::ICMP_EQ)
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
// Transform (X != Y) ? Y : X -> Y
|
||||
if (Pred == ICmpInst::ICMP_NE)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
/// NOTE: if we wanted to, this is where to detect integer MIN/MAX
|
||||
}
|
||||
return Changed ? &SI : 0;
|
||||
}
|
||||
|
||||
|
||||
/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
|
||||
/// PHI node (but the two may be in different blocks). See if the true/false
|
||||
/// values (V) are live in all of the predecessor blocks of the PHI. For
|
||||
/// example, cases like this cannot be mapped:
|
||||
///
|
||||
/// X = phi [ C1, BB1], [C2, BB2]
|
||||
/// Y = add
|
||||
/// Z = select X, Y, 0
|
||||
///
|
||||
/// because Y is not live in BB1/BB2.
|
||||
///
|
||||
static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
|
||||
const SelectInst &SI) {
|
||||
// If the value is a non-instruction value like a constant or argument, it
|
||||
// can always be mapped.
|
||||
const Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (I == 0) return true;
|
||||
|
||||
// If V is a PHI node defined in the same block as the condition PHI, we can
|
||||
// map the arguments.
|
||||
const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
|
||||
|
||||
if (const PHINode *VP = dyn_cast<PHINode>(I))
|
||||
if (VP->getParent() == CondPHI->getParent())
|
||||
return true;
|
||||
|
||||
// Otherwise, if the PHI and select are defined in the same block and if V is
|
||||
// defined in a different block, then we can transform it.
|
||||
if (SI.getParent() == CondPHI->getParent() &&
|
||||
I->getParent() != CondPHI->getParent())
|
||||
return true;
|
||||
|
||||
// Otherwise we have a 'hard' case and we can't tell without doing more
|
||||
// detailed dominator based analysis, punt.
|
||||
return false;
|
||||
}
|
||||
|
||||
/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
|
||||
/// SPF2(SPF1(A, B), C)
|
||||
Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
|
||||
SelectPatternFlavor SPF1,
|
||||
Value *A, Value *B,
|
||||
Instruction &Outer,
|
||||
SelectPatternFlavor SPF2, Value *C) {
|
||||
if (C == A || C == B) {
|
||||
// MAX(MAX(A, B), B) -> MAX(A, B)
|
||||
// MIN(MIN(a, b), a) -> MIN(a, b)
|
||||
if (SPF1 == SPF2)
|
||||
return ReplaceInstUsesWith(Outer, Inner);
|
||||
|
||||
// MAX(MIN(a, b), a) -> a
|
||||
// MIN(MAX(a, b), a) -> a
|
||||
if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
|
||||
(SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
|
||||
(SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
|
||||
(SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
|
||||
return ReplaceInstUsesWith(Outer, C);
|
||||
}
|
||||
|
||||
// TODO: MIN(MIN(A, 23), 97)
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
|
||||
Value *CondVal = SI.getCondition();
|
||||
Value *TrueVal = SI.getTrueValue();
|
||||
Value *FalseVal = SI.getFalseValue();
|
||||
|
||||
// select true, X, Y -> X
|
||||
// select false, X, Y -> Y
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
|
||||
return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
|
||||
|
||||
// select C, X, X -> X
|
||||
if (TrueVal == FalseVal)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
|
||||
if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
|
||||
if (isa<Constant>(TrueVal))
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
else
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
}
|
||||
|
||||
if (SI.getType() == Type::getInt1Ty(SI.getContext())) {
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
|
||||
if (C->getZExtValue()) {
|
||||
// Change: A = select B, true, C --> A = or B, C
|
||||
return BinaryOperator::CreateOr(CondVal, FalseVal);
|
||||
} else {
|
||||
// Change: A = select B, false, C --> A = and !B, C
|
||||
Value *NotCond =
|
||||
InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
|
||||
"not."+CondVal->getName()), SI);
|
||||
return BinaryOperator::CreateAnd(NotCond, FalseVal);
|
||||
}
|
||||
} else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
|
||||
if (C->getZExtValue() == false) {
|
||||
// Change: A = select B, C, false --> A = and B, C
|
||||
return BinaryOperator::CreateAnd(CondVal, TrueVal);
|
||||
} else {
|
||||
// Change: A = select B, C, true --> A = or !B, C
|
||||
Value *NotCond =
|
||||
InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
|
||||
"not."+CondVal->getName()), SI);
|
||||
return BinaryOperator::CreateOr(NotCond, TrueVal);
|
||||
}
|
||||
}
|
||||
|
||||
// select a, b, a -> a&b
|
||||
// select a, a, b -> a|b
|
||||
if (CondVal == TrueVal)
|
||||
return BinaryOperator::CreateOr(CondVal, FalseVal);
|
||||
else if (CondVal == FalseVal)
|
||||
return BinaryOperator::CreateAnd(CondVal, TrueVal);
|
||||
}
|
||||
|
||||
// Selecting between two integer constants?
|
||||
if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
|
||||
if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
|
||||
// select C, 1, 0 -> zext C to int
|
||||
if (FalseValC->isZero() && TrueValC->getValue() == 1) {
|
||||
return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
|
||||
} else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
|
||||
// select C, 0, 1 -> zext !C to int
|
||||
Value *NotCond =
|
||||
InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
|
||||
"not."+CondVal->getName()), SI);
|
||||
return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
|
||||
}
|
||||
|
||||
if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
|
||||
// If one of the constants is zero (we know they can't both be) and we
|
||||
// have an icmp instruction with zero, and we have an 'and' with the
|
||||
// non-constant value, eliminate this whole mess. This corresponds to
|
||||
// cases like this: ((X & 27) ? 27 : 0)
|
||||
if (TrueValC->isZero() || FalseValC->isZero())
|
||||
if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
|
||||
cast<Constant>(IC->getOperand(1))->isNullValue())
|
||||
if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
|
||||
if (ICA->getOpcode() == Instruction::And &&
|
||||
isa<ConstantInt>(ICA->getOperand(1)) &&
|
||||
(ICA->getOperand(1) == TrueValC ||
|
||||
ICA->getOperand(1) == FalseValC) &&
|
||||
cast<ConstantInt>(ICA->getOperand(1))->getValue().isPowerOf2()) {
|
||||
// Okay, now we know that everything is set up, we just don't
|
||||
// know whether we have a icmp_ne or icmp_eq and whether the
|
||||
// true or false val is the zero.
|
||||
bool ShouldNotVal = !TrueValC->isZero();
|
||||
ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
|
||||
Value *V = ICA;
|
||||
if (ShouldNotVal)
|
||||
V = InsertNewInstBefore(BinaryOperator::Create(
|
||||
Instruction::Xor, V, ICA->getOperand(1)), SI);
|
||||
return ReplaceInstUsesWith(SI, V);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// See if we are selecting two values based on a comparison of the two values.
|
||||
if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
|
||||
if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
|
||||
// Transform (X == Y) ? X : Y -> Y
|
||||
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
|
||||
// This is not safe in general for floating point:
|
||||
// consider X== -0, Y== +0.
|
||||
// It becomes safe if either operand is a nonzero constant.
|
||||
ConstantFP *CFPt, *CFPf;
|
||||
if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
|
||||
!CFPt->getValueAPF().isZero()) ||
|
||||
((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
|
||||
!CFPf->getValueAPF().isZero()))
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
}
|
||||
// Transform (X != Y) ? X : Y -> X
|
||||
if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
// NOTE: if we wanted to, this is where to detect MIN/MAX
|
||||
|
||||
} else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
|
||||
// Transform (X == Y) ? Y : X -> X
|
||||
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
|
||||
// This is not safe in general for floating point:
|
||||
// consider X== -0, Y== +0.
|
||||
// It becomes safe if either operand is a nonzero constant.
|
||||
ConstantFP *CFPt, *CFPf;
|
||||
if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
|
||||
!CFPt->getValueAPF().isZero()) ||
|
||||
((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
|
||||
!CFPf->getValueAPF().isZero()))
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
}
|
||||
// Transform (X != Y) ? Y : X -> Y
|
||||
if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
// NOTE: if we wanted to, this is where to detect MIN/MAX
|
||||
}
|
||||
// NOTE: if we wanted to, this is where to detect ABS
|
||||
}
|
||||
|
||||
// See if we are selecting two values based on a comparison of the two values.
|
||||
if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
|
||||
if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
|
||||
return Result;
|
||||
|
||||
if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
|
||||
if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
|
||||
if (TI->hasOneUse() && FI->hasOneUse()) {
|
||||
Instruction *AddOp = 0, *SubOp = 0;
|
||||
|
||||
// Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
|
||||
if (TI->getOpcode() == FI->getOpcode())
|
||||
if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
|
||||
return IV;
|
||||
|
||||
// Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
|
||||
// even legal for FP.
|
||||
if ((TI->getOpcode() == Instruction::Sub &&
|
||||
FI->getOpcode() == Instruction::Add) ||
|
||||
(TI->getOpcode() == Instruction::FSub &&
|
||||
FI->getOpcode() == Instruction::FAdd)) {
|
||||
AddOp = FI; SubOp = TI;
|
||||
} else if ((FI->getOpcode() == Instruction::Sub &&
|
||||
TI->getOpcode() == Instruction::Add) ||
|
||||
(FI->getOpcode() == Instruction::FSub &&
|
||||
TI->getOpcode() == Instruction::FAdd)) {
|
||||
AddOp = TI; SubOp = FI;
|
||||
}
|
||||
|
||||
if (AddOp) {
|
||||
Value *OtherAddOp = 0;
|
||||
if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
|
||||
OtherAddOp = AddOp->getOperand(1);
|
||||
} else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
|
||||
OtherAddOp = AddOp->getOperand(0);
|
||||
}
|
||||
|
||||
if (OtherAddOp) {
|
||||
// So at this point we know we have (Y -> OtherAddOp):
|
||||
// select C, (add X, Y), (sub X, Z)
|
||||
Value *NegVal; // Compute -Z
|
||||
if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
|
||||
NegVal = ConstantExpr::getNeg(C);
|
||||
} else {
|
||||
NegVal = InsertNewInstBefore(
|
||||
BinaryOperator::CreateNeg(SubOp->getOperand(1),
|
||||
"tmp"), SI);
|
||||
}
|
||||
|
||||
Value *NewTrueOp = OtherAddOp;
|
||||
Value *NewFalseOp = NegVal;
|
||||
if (AddOp != TI)
|
||||
std::swap(NewTrueOp, NewFalseOp);
|
||||
Instruction *NewSel =
|
||||
SelectInst::Create(CondVal, NewTrueOp,
|
||||
NewFalseOp, SI.getName() + ".p");
|
||||
|
||||
NewSel = InsertNewInstBefore(NewSel, SI);
|
||||
return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// See if we can fold the select into one of our operands.
|
||||
if (SI.getType()->isInteger()) {
|
||||
if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
|
||||
return FoldI;
|
||||
|
||||
// MAX(MAX(a, b), a) -> MAX(a, b)
|
||||
// MIN(MIN(a, b), a) -> MIN(a, b)
|
||||
// MAX(MIN(a, b), a) -> a
|
||||
// MIN(MAX(a, b), a) -> a
|
||||
Value *LHS, *RHS, *LHS2, *RHS2;
|
||||
if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
|
||||
if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
|
||||
if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
|
||||
SI, SPF, RHS))
|
||||
return R;
|
||||
if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
|
||||
if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
|
||||
SI, SPF, LHS))
|
||||
return R;
|
||||
}
|
||||
|
||||
// TODO.
|
||||
// ABS(-X) -> ABS(X)
|
||||
// ABS(ABS(X)) -> ABS(X)
|
||||
}
|
||||
|
||||
// See if we can fold the select into a phi node if the condition is a select.
|
||||
if (isa<PHINode>(SI.getCondition()))
|
||||
// The true/false values have to be live in the PHI predecessor's blocks.
|
||||
if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
|
||||
CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
|
||||
if (Instruction *NV = FoldOpIntoPhi(SI))
|
||||
return NV;
|
||||
|
||||
if (BinaryOperator::isNot(CondVal)) {
|
||||
SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
|
||||
SI.setOperand(1, FalseVal);
|
||||
SI.setOperand(2, TrueVal);
|
||||
return &SI;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@ -219,57 +219,6 @@ static inline Value *dyn_castFNegVal(Value *V) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
|
||||
/// returning the kind and providing the out parameter results if we
|
||||
/// successfully match.
|
||||
static SelectPatternFlavor
|
||||
MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
|
||||
SelectInst *SI = dyn_cast<SelectInst>(V);
|
||||
if (SI == 0) return SPF_UNKNOWN;
|
||||
|
||||
ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
|
||||
if (ICI == 0) return SPF_UNKNOWN;
|
||||
|
||||
LHS = ICI->getOperand(0);
|
||||
RHS = ICI->getOperand(1);
|
||||
|
||||
// (icmp X, Y) ? X : Y
|
||||
if (SI->getTrueValue() == ICI->getOperand(0) &&
|
||||
SI->getFalseValue() == ICI->getOperand(1)) {
|
||||
switch (ICI->getPredicate()) {
|
||||
default: return SPF_UNKNOWN; // Equality.
|
||||
case ICmpInst::ICMP_UGT:
|
||||
case ICmpInst::ICMP_UGE: return SPF_UMAX;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
case ICmpInst::ICMP_SGE: return SPF_SMAX;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
case ICmpInst::ICMP_ULE: return SPF_UMIN;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
case ICmpInst::ICMP_SLE: return SPF_SMIN;
|
||||
}
|
||||
}
|
||||
|
||||
// (icmp X, Y) ? Y : X
|
||||
if (SI->getTrueValue() == ICI->getOperand(1) &&
|
||||
SI->getFalseValue() == ICI->getOperand(0)) {
|
||||
switch (ICI->getPredicate()) {
|
||||
default: return SPF_UNKNOWN; // Equality.
|
||||
case ICmpInst::ICMP_UGT:
|
||||
case ICmpInst::ICMP_UGE: return SPF_UMIN;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
case ICmpInst::ICMP_SGE: return SPF_SMIN;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
case ICmpInst::ICMP_ULE: return SPF_UMAX;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
case ICmpInst::ICMP_SLE: return SPF_SMAX;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
|
||||
|
||||
return SPF_UNKNOWN;
|
||||
}
|
||||
|
||||
/// isFreeToInvert - Return true if the specified value is free to invert (apply
|
||||
/// ~ to). This happens in cases where the ~ can be eliminated.
|
||||
static inline bool isFreeToInvert(Value *V) {
|
||||
@ -1994,12 +1943,6 @@ Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
|
||||
return commonRemTransforms(I);
|
||||
}
|
||||
|
||||
// isOneBitSet - Return true if there is exactly one bit set in the specified
|
||||
// constant.
|
||||
static bool isOneBitSet(const ConstantInt *CI) {
|
||||
return CI->getValue().isPowerOf2();
|
||||
}
|
||||
|
||||
/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
|
||||
/// are carefully arranged to allow folding of expressions such as:
|
||||
///
|
||||
@ -2240,10 +2183,10 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
|
||||
// Adding a one to a single bit bit-field should be turned into an XOR
|
||||
// of the bit. First thing to check is to see if this AND is with a
|
||||
// single bit constant.
|
||||
const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
|
||||
const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
|
||||
|
||||
// If there is only one bit set...
|
||||
if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
|
||||
// If there is only one bit set.
|
||||
if (AndRHSV.isPowerOf2()) {
|
||||
// Ok, at this point, we know that we are masking the result of the
|
||||
// ADD down to exactly one bit. If the constant we are adding has
|
||||
// no bits set below this bit, then we can eliminate the ADD.
|
||||
@ -4421,638 +4364,6 @@ const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
|
||||
}
|
||||
|
||||
|
||||
/// GetSelectFoldableOperands - We want to turn code that looks like this:
|
||||
/// %C = or %A, %B
|
||||
/// %D = select %cond, %C, %A
|
||||
/// into:
|
||||
/// %C = select %cond, %B, 0
|
||||
/// %D = or %A, %C
|
||||
///
|
||||
/// Assuming that the specified instruction is an operand to the select, return
|
||||
/// a bitmask indicating which operands of this instruction are foldable if they
|
||||
/// equal the other incoming value of the select.
|
||||
///
|
||||
static unsigned GetSelectFoldableOperands(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
case Instruction::Mul:
|
||||
case Instruction::And:
|
||||
case Instruction::Or:
|
||||
case Instruction::Xor:
|
||||
return 3; // Can fold through either operand.
|
||||
case Instruction::Sub: // Can only fold on the amount subtracted.
|
||||
case Instruction::Shl: // Can only fold on the shift amount.
|
||||
case Instruction::LShr:
|
||||
case Instruction::AShr:
|
||||
return 1;
|
||||
default:
|
||||
return 0; // Cannot fold
|
||||
}
|
||||
}
|
||||
|
||||
/// GetSelectFoldableConstant - For the same transformation as the previous
|
||||
/// function, return the identity constant that goes into the select.
|
||||
static Constant *GetSelectFoldableConstant(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
default: llvm_unreachable("This cannot happen!");
|
||||
case Instruction::Add:
|
||||
case Instruction::Sub:
|
||||
case Instruction::Or:
|
||||
case Instruction::Xor:
|
||||
case Instruction::Shl:
|
||||
case Instruction::LShr:
|
||||
case Instruction::AShr:
|
||||
return Constant::getNullValue(I->getType());
|
||||
case Instruction::And:
|
||||
return Constant::getAllOnesValue(I->getType());
|
||||
case Instruction::Mul:
|
||||
return ConstantInt::get(I->getType(), 1);
|
||||
}
|
||||
}
|
||||
|
||||
/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
|
||||
/// have the same opcode and only one use each. Try to simplify this.
|
||||
Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
|
||||
Instruction *FI) {
|
||||
if (TI->getNumOperands() == 1) {
|
||||
// If this is a non-volatile load or a cast from the same type,
|
||||
// merge.
|
||||
if (TI->isCast()) {
|
||||
if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
|
||||
return 0;
|
||||
} else {
|
||||
return 0; // unknown unary op.
|
||||
}
|
||||
|
||||
// Fold this by inserting a select from the input values.
|
||||
SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
|
||||
FI->getOperand(0), SI.getName()+".v");
|
||||
InsertNewInstBefore(NewSI, SI);
|
||||
return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
|
||||
TI->getType());
|
||||
}
|
||||
|
||||
// Only handle binary operators here.
|
||||
if (!isa<BinaryOperator>(TI))
|
||||
return 0;
|
||||
|
||||
// Figure out if the operations have any operands in common.
|
||||
Value *MatchOp, *OtherOpT, *OtherOpF;
|
||||
bool MatchIsOpZero;
|
||||
if (TI->getOperand(0) == FI->getOperand(0)) {
|
||||
MatchOp = TI->getOperand(0);
|
||||
OtherOpT = TI->getOperand(1);
|
||||
OtherOpF = FI->getOperand(1);
|
||||
MatchIsOpZero = true;
|
||||
} else if (TI->getOperand(1) == FI->getOperand(1)) {
|
||||
MatchOp = TI->getOperand(1);
|
||||
OtherOpT = TI->getOperand(0);
|
||||
OtherOpF = FI->getOperand(0);
|
||||
MatchIsOpZero = false;
|
||||
} else if (!TI->isCommutative()) {
|
||||
return 0;
|
||||
} else if (TI->getOperand(0) == FI->getOperand(1)) {
|
||||
MatchOp = TI->getOperand(0);
|
||||
OtherOpT = TI->getOperand(1);
|
||||
OtherOpF = FI->getOperand(0);
|
||||
MatchIsOpZero = true;
|
||||
} else if (TI->getOperand(1) == FI->getOperand(0)) {
|
||||
MatchOp = TI->getOperand(1);
|
||||
OtherOpT = TI->getOperand(0);
|
||||
OtherOpF = FI->getOperand(1);
|
||||
MatchIsOpZero = true;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// If we reach here, they do have operations in common.
|
||||
SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
|
||||
OtherOpF, SI.getName()+".v");
|
||||
InsertNewInstBefore(NewSI, SI);
|
||||
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
|
||||
if (MatchIsOpZero)
|
||||
return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
|
||||
else
|
||||
return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
|
||||
}
|
||||
llvm_unreachable("Shouldn't get here");
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool isSelect01(Constant *C1, Constant *C2) {
|
||||
ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
|
||||
if (!C1I)
|
||||
return false;
|
||||
ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
|
||||
if (!C2I)
|
||||
return false;
|
||||
return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
|
||||
}
|
||||
|
||||
/// FoldSelectIntoOp - Try fold the select into one of the operands to
|
||||
/// facilitate further optimization.
|
||||
Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
|
||||
Value *FalseVal) {
|
||||
// See the comment above GetSelectFoldableOperands for a description of the
|
||||
// transformation we are doing here.
|
||||
if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
|
||||
if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
|
||||
!isa<Constant>(FalseVal)) {
|
||||
if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
|
||||
unsigned OpToFold = 0;
|
||||
if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
|
||||
OpToFold = 1;
|
||||
} else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
|
||||
OpToFold = 2;
|
||||
}
|
||||
|
||||
if (OpToFold) {
|
||||
Constant *C = GetSelectFoldableConstant(TVI);
|
||||
Value *OOp = TVI->getOperand(2-OpToFold);
|
||||
// Avoid creating select between 2 constants unless it's selecting
|
||||
// between 0 and 1.
|
||||
if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
|
||||
Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
|
||||
InsertNewInstBefore(NewSel, SI);
|
||||
NewSel->takeName(TVI);
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
|
||||
return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
|
||||
llvm_unreachable("Unknown instruction!!");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
|
||||
if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
|
||||
!isa<Constant>(TrueVal)) {
|
||||
if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
|
||||
unsigned OpToFold = 0;
|
||||
if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
|
||||
OpToFold = 1;
|
||||
} else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
|
||||
OpToFold = 2;
|
||||
}
|
||||
|
||||
if (OpToFold) {
|
||||
Constant *C = GetSelectFoldableConstant(FVI);
|
||||
Value *OOp = FVI->getOperand(2-OpToFold);
|
||||
// Avoid creating select between 2 constants unless it's selecting
|
||||
// between 0 and 1.
|
||||
if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
|
||||
Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
|
||||
InsertNewInstBefore(NewSel, SI);
|
||||
NewSel->takeName(FVI);
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
|
||||
return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
|
||||
llvm_unreachable("Unknown instruction!!");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// visitSelectInstWithICmp - Visit a SelectInst that has an
|
||||
/// ICmpInst as its first operand.
|
||||
///
|
||||
Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
|
||||
ICmpInst *ICI) {
|
||||
bool Changed = false;
|
||||
ICmpInst::Predicate Pred = ICI->getPredicate();
|
||||
Value *CmpLHS = ICI->getOperand(0);
|
||||
Value *CmpRHS = ICI->getOperand(1);
|
||||
Value *TrueVal = SI.getTrueValue();
|
||||
Value *FalseVal = SI.getFalseValue();
|
||||
|
||||
// Check cases where the comparison is with a constant that
|
||||
// can be adjusted to fit the min/max idiom. We may edit ICI in
|
||||
// place here, so make sure the select is the only user.
|
||||
if (ICI->hasOneUse())
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
|
||||
switch (Pred) {
|
||||
default: break;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
case ICmpInst::ICMP_SLT: {
|
||||
// X < MIN ? T : F --> F
|
||||
if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
// X < C ? X : C-1 --> X > C-1 ? C-1 : X
|
||||
Constant *AdjustedRHS = SubOne(CI);
|
||||
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
|
||||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
|
||||
Pred = ICmpInst::getSwappedPredicate(Pred);
|
||||
CmpRHS = AdjustedRHS;
|
||||
std::swap(FalseVal, TrueVal);
|
||||
ICI->setPredicate(Pred);
|
||||
ICI->setOperand(1, CmpRHS);
|
||||
SI.setOperand(1, TrueVal);
|
||||
SI.setOperand(2, FalseVal);
|
||||
Changed = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_UGT:
|
||||
case ICmpInst::ICMP_SGT: {
|
||||
// X > MAX ? T : F --> F
|
||||
if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
// X > C ? X : C+1 --> X < C+1 ? C+1 : X
|
||||
Constant *AdjustedRHS = AddOne(CI);
|
||||
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
|
||||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
|
||||
Pred = ICmpInst::getSwappedPredicate(Pred);
|
||||
CmpRHS = AdjustedRHS;
|
||||
std::swap(FalseVal, TrueVal);
|
||||
ICI->setPredicate(Pred);
|
||||
ICI->setOperand(1, CmpRHS);
|
||||
SI.setOperand(1, TrueVal);
|
||||
SI.setOperand(2, FalseVal);
|
||||
Changed = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
|
||||
// (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
|
||||
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
|
||||
if (match(TrueVal, m_ConstantInt<-1>()) &&
|
||||
match(FalseVal, m_ConstantInt<0>()))
|
||||
Pred = ICI->getPredicate();
|
||||
else if (match(TrueVal, m_ConstantInt<0>()) &&
|
||||
match(FalseVal, m_ConstantInt<-1>()))
|
||||
Pred = CmpInst::getInversePredicate(ICI->getPredicate());
|
||||
|
||||
if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
|
||||
// If we are just checking for a icmp eq of a single bit and zext'ing it
|
||||
// to an integer, then shift the bit to the appropriate place and then
|
||||
// cast to integer to avoid the comparison.
|
||||
const APInt &Op1CV = CI->getValue();
|
||||
|
||||
// sext (x <s 0) to i32 --> x>>s31 true if signbit set.
|
||||
// sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
|
||||
if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
|
||||
(Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
|
||||
Value *In = ICI->getOperand(0);
|
||||
Value *Sh = ConstantInt::get(In->getType(),
|
||||
In->getType()->getScalarSizeInBits()-1);
|
||||
In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
|
||||
In->getName()+".lobit"),
|
||||
*ICI);
|
||||
if (In->getType() != SI.getType())
|
||||
In = CastInst::CreateIntegerCast(In, SI.getType(),
|
||||
true/*SExt*/, "tmp", ICI);
|
||||
|
||||
if (Pred == ICmpInst::ICMP_SGT)
|
||||
In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
|
||||
In->getName()+".not"), *ICI);
|
||||
|
||||
return ReplaceInstUsesWith(SI, In);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
|
||||
// Transform (X == Y) ? X : Y -> Y
|
||||
if (Pred == ICmpInst::ICMP_EQ)
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
// Transform (X != Y) ? X : Y -> X
|
||||
if (Pred == ICmpInst::ICMP_NE)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
/// NOTE: if we wanted to, this is where to detect integer MIN/MAX
|
||||
|
||||
} else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
|
||||
// Transform (X == Y) ? Y : X -> X
|
||||
if (Pred == ICmpInst::ICMP_EQ)
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
// Transform (X != Y) ? Y : X -> Y
|
||||
if (Pred == ICmpInst::ICMP_NE)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
/// NOTE: if we wanted to, this is where to detect integer MIN/MAX
|
||||
}
|
||||
return Changed ? &SI : 0;
|
||||
}
|
||||
|
||||
|
||||
/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
|
||||
/// PHI node (but the two may be in different blocks). See if the true/false
|
||||
/// values (V) are live in all of the predecessor blocks of the PHI. For
|
||||
/// example, cases like this cannot be mapped:
|
||||
///
|
||||
/// X = phi [ C1, BB1], [C2, BB2]
|
||||
/// Y = add
|
||||
/// Z = select X, Y, 0
|
||||
///
|
||||
/// because Y is not live in BB1/BB2.
|
||||
///
|
||||
static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
|
||||
const SelectInst &SI) {
|
||||
// If the value is a non-instruction value like a constant or argument, it
|
||||
// can always be mapped.
|
||||
const Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (I == 0) return true;
|
||||
|
||||
// If V is a PHI node defined in the same block as the condition PHI, we can
|
||||
// map the arguments.
|
||||
const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
|
||||
|
||||
if (const PHINode *VP = dyn_cast<PHINode>(I))
|
||||
if (VP->getParent() == CondPHI->getParent())
|
||||
return true;
|
||||
|
||||
// Otherwise, if the PHI and select are defined in the same block and if V is
|
||||
// defined in a different block, then we can transform it.
|
||||
if (SI.getParent() == CondPHI->getParent() &&
|
||||
I->getParent() != CondPHI->getParent())
|
||||
return true;
|
||||
|
||||
// Otherwise we have a 'hard' case and we can't tell without doing more
|
||||
// detailed dominator based analysis, punt.
|
||||
return false;
|
||||
}
|
||||
|
||||
/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
|
||||
/// SPF2(SPF1(A, B), C)
|
||||
Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
|
||||
SelectPatternFlavor SPF1,
|
||||
Value *A, Value *B,
|
||||
Instruction &Outer,
|
||||
SelectPatternFlavor SPF2, Value *C) {
|
||||
if (C == A || C == B) {
|
||||
// MAX(MAX(A, B), B) -> MAX(A, B)
|
||||
// MIN(MIN(a, b), a) -> MIN(a, b)
|
||||
if (SPF1 == SPF2)
|
||||
return ReplaceInstUsesWith(Outer, Inner);
|
||||
|
||||
// MAX(MIN(a, b), a) -> a
|
||||
// MIN(MAX(a, b), a) -> a
|
||||
if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
|
||||
(SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
|
||||
(SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
|
||||
(SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
|
||||
return ReplaceInstUsesWith(Outer, C);
|
||||
}
|
||||
|
||||
// TODO: MIN(MIN(A, 23), 97)
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
|
||||
Value *CondVal = SI.getCondition();
|
||||
Value *TrueVal = SI.getTrueValue();
|
||||
Value *FalseVal = SI.getFalseValue();
|
||||
|
||||
// select true, X, Y -> X
|
||||
// select false, X, Y -> Y
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
|
||||
return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
|
||||
|
||||
// select C, X, X -> X
|
||||
if (TrueVal == FalseVal)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
|
||||
if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
|
||||
if (isa<Constant>(TrueVal))
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
else
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
}
|
||||
|
||||
if (SI.getType() == Type::getInt1Ty(SI.getContext())) {
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
|
||||
if (C->getZExtValue()) {
|
||||
// Change: A = select B, true, C --> A = or B, C
|
||||
return BinaryOperator::CreateOr(CondVal, FalseVal);
|
||||
} else {
|
||||
// Change: A = select B, false, C --> A = and !B, C
|
||||
Value *NotCond =
|
||||
InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
|
||||
"not."+CondVal->getName()), SI);
|
||||
return BinaryOperator::CreateAnd(NotCond, FalseVal);
|
||||
}
|
||||
} else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
|
||||
if (C->getZExtValue() == false) {
|
||||
// Change: A = select B, C, false --> A = and B, C
|
||||
return BinaryOperator::CreateAnd(CondVal, TrueVal);
|
||||
} else {
|
||||
// Change: A = select B, C, true --> A = or !B, C
|
||||
Value *NotCond =
|
||||
InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
|
||||
"not."+CondVal->getName()), SI);
|
||||
return BinaryOperator::CreateOr(NotCond, TrueVal);
|
||||
}
|
||||
}
|
||||
|
||||
// select a, b, a -> a&b
|
||||
// select a, a, b -> a|b
|
||||
if (CondVal == TrueVal)
|
||||
return BinaryOperator::CreateOr(CondVal, FalseVal);
|
||||
else if (CondVal == FalseVal)
|
||||
return BinaryOperator::CreateAnd(CondVal, TrueVal);
|
||||
}
|
||||
|
||||
// Selecting between two integer constants?
|
||||
if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
|
||||
if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
|
||||
// select C, 1, 0 -> zext C to int
|
||||
if (FalseValC->isZero() && TrueValC->getValue() == 1) {
|
||||
return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
|
||||
} else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
|
||||
// select C, 0, 1 -> zext !C to int
|
||||
Value *NotCond =
|
||||
InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
|
||||
"not."+CondVal->getName()), SI);
|
||||
return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
|
||||
}
|
||||
|
||||
if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
|
||||
// If one of the constants is zero (we know they can't both be) and we
|
||||
// have an icmp instruction with zero, and we have an 'and' with the
|
||||
// non-constant value, eliminate this whole mess. This corresponds to
|
||||
// cases like this: ((X & 27) ? 27 : 0)
|
||||
if (TrueValC->isZero() || FalseValC->isZero())
|
||||
if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
|
||||
cast<Constant>(IC->getOperand(1))->isNullValue())
|
||||
if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
|
||||
if (ICA->getOpcode() == Instruction::And &&
|
||||
isa<ConstantInt>(ICA->getOperand(1)) &&
|
||||
(ICA->getOperand(1) == TrueValC ||
|
||||
ICA->getOperand(1) == FalseValC) &&
|
||||
isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
|
||||
// Okay, now we know that everything is set up, we just don't
|
||||
// know whether we have a icmp_ne or icmp_eq and whether the
|
||||
// true or false val is the zero.
|
||||
bool ShouldNotVal = !TrueValC->isZero();
|
||||
ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
|
||||
Value *V = ICA;
|
||||
if (ShouldNotVal)
|
||||
V = InsertNewInstBefore(BinaryOperator::Create(
|
||||
Instruction::Xor, V, ICA->getOperand(1)), SI);
|
||||
return ReplaceInstUsesWith(SI, V);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// See if we are selecting two values based on a comparison of the two values.
|
||||
if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
|
||||
if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
|
||||
// Transform (X == Y) ? X : Y -> Y
|
||||
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
|
||||
// This is not safe in general for floating point:
|
||||
// consider X== -0, Y== +0.
|
||||
// It becomes safe if either operand is a nonzero constant.
|
||||
ConstantFP *CFPt, *CFPf;
|
||||
if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
|
||||
!CFPt->getValueAPF().isZero()) ||
|
||||
((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
|
||||
!CFPf->getValueAPF().isZero()))
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
}
|
||||
// Transform (X != Y) ? X : Y -> X
|
||||
if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
// NOTE: if we wanted to, this is where to detect MIN/MAX
|
||||
|
||||
} else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
|
||||
// Transform (X == Y) ? Y : X -> X
|
||||
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
|
||||
// This is not safe in general for floating point:
|
||||
// consider X== -0, Y== +0.
|
||||
// It becomes safe if either operand is a nonzero constant.
|
||||
ConstantFP *CFPt, *CFPf;
|
||||
if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
|
||||
!CFPt->getValueAPF().isZero()) ||
|
||||
((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
|
||||
!CFPf->getValueAPF().isZero()))
|
||||
return ReplaceInstUsesWith(SI, FalseVal);
|
||||
}
|
||||
// Transform (X != Y) ? Y : X -> Y
|
||||
if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
|
||||
return ReplaceInstUsesWith(SI, TrueVal);
|
||||
// NOTE: if we wanted to, this is where to detect MIN/MAX
|
||||
}
|
||||
// NOTE: if we wanted to, this is where to detect ABS
|
||||
}
|
||||
|
||||
// See if we are selecting two values based on a comparison of the two values.
|
||||
if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
|
||||
if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
|
||||
return Result;
|
||||
|
||||
if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
|
||||
if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
|
||||
if (TI->hasOneUse() && FI->hasOneUse()) {
|
||||
Instruction *AddOp = 0, *SubOp = 0;
|
||||
|
||||
// Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
|
||||
if (TI->getOpcode() == FI->getOpcode())
|
||||
if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
|
||||
return IV;
|
||||
|
||||
// Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
|
||||
// even legal for FP.
|
||||
if ((TI->getOpcode() == Instruction::Sub &&
|
||||
FI->getOpcode() == Instruction::Add) ||
|
||||
(TI->getOpcode() == Instruction::FSub &&
|
||||
FI->getOpcode() == Instruction::FAdd)) {
|
||||
AddOp = FI; SubOp = TI;
|
||||
} else if ((FI->getOpcode() == Instruction::Sub &&
|
||||
TI->getOpcode() == Instruction::Add) ||
|
||||
(FI->getOpcode() == Instruction::FSub &&
|
||||
TI->getOpcode() == Instruction::FAdd)) {
|
||||
AddOp = TI; SubOp = FI;
|
||||
}
|
||||
|
||||
if (AddOp) {
|
||||
Value *OtherAddOp = 0;
|
||||
if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
|
||||
OtherAddOp = AddOp->getOperand(1);
|
||||
} else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
|
||||
OtherAddOp = AddOp->getOperand(0);
|
||||
}
|
||||
|
||||
if (OtherAddOp) {
|
||||
// So at this point we know we have (Y -> OtherAddOp):
|
||||
// select C, (add X, Y), (sub X, Z)
|
||||
Value *NegVal; // Compute -Z
|
||||
if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
|
||||
NegVal = ConstantExpr::getNeg(C);
|
||||
} else {
|
||||
NegVal = InsertNewInstBefore(
|
||||
BinaryOperator::CreateNeg(SubOp->getOperand(1),
|
||||
"tmp"), SI);
|
||||
}
|
||||
|
||||
Value *NewTrueOp = OtherAddOp;
|
||||
Value *NewFalseOp = NegVal;
|
||||
if (AddOp != TI)
|
||||
std::swap(NewTrueOp, NewFalseOp);
|
||||
Instruction *NewSel =
|
||||
SelectInst::Create(CondVal, NewTrueOp,
|
||||
NewFalseOp, SI.getName() + ".p");
|
||||
|
||||
NewSel = InsertNewInstBefore(NewSel, SI);
|
||||
return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// See if we can fold the select into one of our operands.
|
||||
if (SI.getType()->isInteger()) {
|
||||
if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
|
||||
return FoldI;
|
||||
|
||||
// MAX(MAX(a, b), a) -> MAX(a, b)
|
||||
// MIN(MIN(a, b), a) -> MIN(a, b)
|
||||
// MAX(MIN(a, b), a) -> a
|
||||
// MIN(MAX(a, b), a) -> a
|
||||
Value *LHS, *RHS, *LHS2, *RHS2;
|
||||
if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
|
||||
if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
|
||||
if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
|
||||
SI, SPF, RHS))
|
||||
return R;
|
||||
if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
|
||||
if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
|
||||
SI, SPF, LHS))
|
||||
return R;
|
||||
}
|
||||
|
||||
// TODO.
|
||||
// ABS(-X) -> ABS(X)
|
||||
// ABS(ABS(X)) -> ABS(X)
|
||||
}
|
||||
|
||||
// See if we can fold the select into a phi node if the condition is a select.
|
||||
if (isa<PHINode>(SI.getCondition()))
|
||||
// The true/false values have to be live in the PHI predecessor's blocks.
|
||||
if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
|
||||
CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
|
||||
if (Instruction *NV = FoldOpIntoPhi(SI))
|
||||
return NV;
|
||||
|
||||
if (BinaryOperator::isNot(CondVal)) {
|
||||
SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
|
||||
SI.setOperand(1, FalseVal);
|
||||
SI.setOperand(2, TrueVal);
|
||||
return &SI;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// EnforceKnownAlignment - If the specified pointer points to an object that
|
||||
/// we control, modify the object's alignment to PrefAlign. This isn't
|
||||
/// often possible though. If alignment is important, a more reliable approach
|
||||
|
Loading…
Reference in New Issue
Block a user