- Eliminate the last traces of the 'analysis' namespace

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3550 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-08-30 22:53:53 +00:00
parent 2964f3624c
commit c74cb8698f
7 changed files with 16 additions and 29 deletions

View File

@ -15,8 +15,6 @@ class Type;
class Value;
class ConstantInt;
namespace analysis {
struct ExprType;
// ClassifyExpression: Analyze an expression to determine the complexity of the
@ -52,6 +50,4 @@ struct ExprType {
const Type *getExprType(const Type *Default) const;
};
} // End namespace analysis
#endif

View File

@ -10,11 +10,6 @@
#include "llvm/Analysis/Expressions.h"
#include "llvm/ConstantHandling.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/Instruction.h"
#include <iostream>
using namespace analysis;
ExprType::ExprType(Value *Val) {
if (Val)
@ -233,7 +228,7 @@ static inline ExprType negate(const ExprType &E, Value *V) {
// Note that this analysis cannot get into infinite loops because it treats PHI
// nodes as being an unknown linear expression.
//
ExprType analysis::ClassifyExpression(Value *Expr) {
ExprType ClassifyExpression(Value *Expr) {
assert(Expr != 0 && "Can't classify a null expression!");
if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy)
return Expr; // FIXME: Can't handle FP expressions

View File

@ -25,9 +25,6 @@
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
using analysis::ExprType;
static bool isLoopInvariant(const Value *V, const Loop *L) {
if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
return true;
@ -85,8 +82,8 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
Value *V2 = Phi->getIncomingValue(1);
if (L == 0) { // No loop information? Base everything on expression analysis
ExprType E1 = analysis::ClassifyExpression(V1);
ExprType E2 = analysis::ClassifyExpression(V2);
ExprType E1 = ClassifyExpression(V1);
ExprType E2 = ClassifyExpression(V2);
if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
std::swap(E1, E2);
@ -128,7 +125,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
}
if (Step == 0) { // Unrecognized step value...
ExprType StepE = analysis::ClassifyExpression(V2);
ExprType StepE = ClassifyExpression(V2);
if (StepE.ExprTy != ExprType::Linear ||
StepE.Var != Phi) return;
@ -136,7 +133,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
} else { // We were able to get a step value, simplify with expr analysis
ExprType StepE = analysis::ClassifyExpression(Step);
ExprType StepE = ClassifyExpression(Step);
if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
// No offset from variable? Grab the variable
Step = StepE.Var;

View File

@ -15,7 +15,6 @@
#include "Support/STLExtras.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
#include <iostream>
using std::cerr;
static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
@ -44,7 +43,7 @@ static bool MallocConvertableToType(MallocInst *MI, const Type *Ty,
if (!Ty->isSized()) return false; // Can only alloc something with a size
// Analyze the number of bytes allocated...
analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
ExprType Expr = ClassifyExpression(MI->getArraySize());
// Get information about the base datatype being allocated, before & after
int ReqTypeSize = TD.getTypeSize(Ty);
@ -79,7 +78,7 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
BasicBlock::iterator It = BB->end();
// Analyze the number of bytes allocated...
analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
ExprType Expr = ClassifyExpression(MI->getArraySize());
const PointerType *AllocTy = cast<PointerType>(Ty);
const Type *ElType = AllocTy->getElementType();

View File

@ -94,7 +94,7 @@ const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal,
// See if the cast is of an integer expression that is either a constant,
// or a value scaled by some amount with a possible offset.
//
analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal);
ExprType Expr = ClassifyExpression(OffsetVal);
// Get the offset and scale values if they exists...
// A scale of zero with Expr.Var != 0 means a scale of 1.

View File

@ -71,20 +71,20 @@ namespace {
OS << *I;
if ((*I)->getType() == Type::VoidTy) continue;
analysis::ExprType R = analysis::ClassifyExpression(*I);
ExprType R = ClassifyExpression(*I);
if (R.Var == *I) continue; // Doesn't tell us anything
OS << "\t\tExpr =";
switch (R.ExprTy) {
case analysis::ExprType::ScaledLinear:
case ExprType::ScaledLinear:
WriteAsOperand(OS << "(", (Value*)R.Scale) << " ) *";
// fall through
case analysis::ExprType::Linear:
case ExprType::Linear:
WriteAsOperand(OS << "(", R.Var) << " )";
if (R.Offset == 0) break;
else OS << " +";
// fall through
case analysis::ExprType::Constant:
case ExprType::Constant:
if (R.Offset) WriteAsOperand(OS, (Value*)R.Offset);
else OS << " 0";
break;

View File

@ -71,20 +71,20 @@ namespace {
OS << *I;
if ((*I)->getType() == Type::VoidTy) continue;
analysis::ExprType R = analysis::ClassifyExpression(*I);
ExprType R = ClassifyExpression(*I);
if (R.Var == *I) continue; // Doesn't tell us anything
OS << "\t\tExpr =";
switch (R.ExprTy) {
case analysis::ExprType::ScaledLinear:
case ExprType::ScaledLinear:
WriteAsOperand(OS << "(", (Value*)R.Scale) << " ) *";
// fall through
case analysis::ExprType::Linear:
case ExprType::Linear:
WriteAsOperand(OS << "(", R.Var) << " )";
if (R.Offset == 0) break;
else OS << " +";
// fall through
case analysis::ExprType::Constant:
case ExprType::Constant:
if (R.Offset) WriteAsOperand(OS, (Value*)R.Offset);
else OS << " 0";
break;