mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
- Eliminate the last traces of the 'analysis' namespace
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3550 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
2964f3624c
commit
c74cb8698f
@ -15,8 +15,6 @@ class Type;
|
||||
class Value;
|
||||
class ConstantInt;
|
||||
|
||||
namespace analysis {
|
||||
|
||||
struct ExprType;
|
||||
|
||||
// ClassifyExpression: Analyze an expression to determine the complexity of the
|
||||
@ -52,6 +50,4 @@ struct ExprType {
|
||||
const Type *getExprType(const Type *Default) const;
|
||||
};
|
||||
|
||||
} // End namespace analysis
|
||||
|
||||
#endif
|
||||
|
@ -10,11 +10,6 @@
|
||||
#include "llvm/Analysis/Expressions.h"
|
||||
#include "llvm/ConstantHandling.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/Instruction.h"
|
||||
#include <iostream>
|
||||
|
||||
using namespace analysis;
|
||||
|
||||
ExprType::ExprType(Value *Val) {
|
||||
if (Val)
|
||||
@ -233,7 +228,7 @@ static inline ExprType negate(const ExprType &E, Value *V) {
|
||||
// Note that this analysis cannot get into infinite loops because it treats PHI
|
||||
// nodes as being an unknown linear expression.
|
||||
//
|
||||
ExprType analysis::ClassifyExpression(Value *Expr) {
|
||||
ExprType ClassifyExpression(Value *Expr) {
|
||||
assert(Expr != 0 && "Can't classify a null expression!");
|
||||
if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy)
|
||||
return Expr; // FIXME: Can't handle FP expressions
|
||||
|
@ -25,9 +25,6 @@
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/Assembly/Writer.h"
|
||||
|
||||
using analysis::ExprType;
|
||||
|
||||
|
||||
static bool isLoopInvariant(const Value *V, const Loop *L) {
|
||||
if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
|
||||
return true;
|
||||
@ -85,8 +82,8 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
|
||||
Value *V2 = Phi->getIncomingValue(1);
|
||||
|
||||
if (L == 0) { // No loop information? Base everything on expression analysis
|
||||
ExprType E1 = analysis::ClassifyExpression(V1);
|
||||
ExprType E2 = analysis::ClassifyExpression(V2);
|
||||
ExprType E1 = ClassifyExpression(V1);
|
||||
ExprType E2 = ClassifyExpression(V2);
|
||||
|
||||
if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
|
||||
std::swap(E1, E2);
|
||||
@ -128,7 +125,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
|
||||
}
|
||||
|
||||
if (Step == 0) { // Unrecognized step value...
|
||||
ExprType StepE = analysis::ClassifyExpression(V2);
|
||||
ExprType StepE = ClassifyExpression(V2);
|
||||
if (StepE.ExprTy != ExprType::Linear ||
|
||||
StepE.Var != Phi) return;
|
||||
|
||||
@ -136,7 +133,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
|
||||
if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
|
||||
Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
|
||||
} else { // We were able to get a step value, simplify with expr analysis
|
||||
ExprType StepE = analysis::ClassifyExpression(Step);
|
||||
ExprType StepE = ClassifyExpression(Step);
|
||||
if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
|
||||
// No offset from variable? Grab the variable
|
||||
Step = StepE.Var;
|
||||
|
@ -15,7 +15,6 @@
|
||||
#include "Support/STLExtras.h"
|
||||
#include "Support/StatisticReporter.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
using std::cerr;
|
||||
|
||||
static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
|
||||
@ -44,7 +43,7 @@ static bool MallocConvertableToType(MallocInst *MI, const Type *Ty,
|
||||
if (!Ty->isSized()) return false; // Can only alloc something with a size
|
||||
|
||||
// Analyze the number of bytes allocated...
|
||||
analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
|
||||
ExprType Expr = ClassifyExpression(MI->getArraySize());
|
||||
|
||||
// Get information about the base datatype being allocated, before & after
|
||||
int ReqTypeSize = TD.getTypeSize(Ty);
|
||||
@ -79,7 +78,7 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
|
||||
BasicBlock::iterator It = BB->end();
|
||||
|
||||
// Analyze the number of bytes allocated...
|
||||
analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
|
||||
ExprType Expr = ClassifyExpression(MI->getArraySize());
|
||||
|
||||
const PointerType *AllocTy = cast<PointerType>(Ty);
|
||||
const Type *ElType = AllocTy->getElementType();
|
||||
|
@ -94,7 +94,7 @@ const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal,
|
||||
// See if the cast is of an integer expression that is either a constant,
|
||||
// or a value scaled by some amount with a possible offset.
|
||||
//
|
||||
analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal);
|
||||
ExprType Expr = ClassifyExpression(OffsetVal);
|
||||
|
||||
// Get the offset and scale values if they exists...
|
||||
// A scale of zero with Expr.Var != 0 means a scale of 1.
|
||||
|
@ -71,20 +71,20 @@ namespace {
|
||||
OS << *I;
|
||||
|
||||
if ((*I)->getType() == Type::VoidTy) continue;
|
||||
analysis::ExprType R = analysis::ClassifyExpression(*I);
|
||||
ExprType R = ClassifyExpression(*I);
|
||||
if (R.Var == *I) continue; // Doesn't tell us anything
|
||||
|
||||
OS << "\t\tExpr =";
|
||||
switch (R.ExprTy) {
|
||||
case analysis::ExprType::ScaledLinear:
|
||||
case ExprType::ScaledLinear:
|
||||
WriteAsOperand(OS << "(", (Value*)R.Scale) << " ) *";
|
||||
// fall through
|
||||
case analysis::ExprType::Linear:
|
||||
case ExprType::Linear:
|
||||
WriteAsOperand(OS << "(", R.Var) << " )";
|
||||
if (R.Offset == 0) break;
|
||||
else OS << " +";
|
||||
// fall through
|
||||
case analysis::ExprType::Constant:
|
||||
case ExprType::Constant:
|
||||
if (R.Offset) WriteAsOperand(OS, (Value*)R.Offset);
|
||||
else OS << " 0";
|
||||
break;
|
||||
|
@ -71,20 +71,20 @@ namespace {
|
||||
OS << *I;
|
||||
|
||||
if ((*I)->getType() == Type::VoidTy) continue;
|
||||
analysis::ExprType R = analysis::ClassifyExpression(*I);
|
||||
ExprType R = ClassifyExpression(*I);
|
||||
if (R.Var == *I) continue; // Doesn't tell us anything
|
||||
|
||||
OS << "\t\tExpr =";
|
||||
switch (R.ExprTy) {
|
||||
case analysis::ExprType::ScaledLinear:
|
||||
case ExprType::ScaledLinear:
|
||||
WriteAsOperand(OS << "(", (Value*)R.Scale) << " ) *";
|
||||
// fall through
|
||||
case analysis::ExprType::Linear:
|
||||
case ExprType::Linear:
|
||||
WriteAsOperand(OS << "(", R.Var) << " )";
|
||||
if (R.Offset == 0) break;
|
||||
else OS << " +";
|
||||
// fall through
|
||||
case analysis::ExprType::Constant:
|
||||
case ExprType::Constant:
|
||||
if (R.Offset) WriteAsOperand(OS, (Value*)R.Offset);
|
||||
else OS << " 0";
|
||||
break;
|
||||
|
Loading…
Reference in New Issue
Block a user