[OCaml] Rework Llvm_executionengine using ctypes.

Since JIT->MCJIT migration, most of the ExecutionEngine interface
became deprecated and/or broken. This especially affected the OCaml
bindings, as runFunction is no longer available, and unlike in C,
it is not possible to coerce a pointer to a function and call it
in OCaml.

In practice, LLVM 3.5 shipped completely unusable
Llvm_executionengine.

The GenericValue interface and runFunction were essentially
a poor man's FFI. As such, this interface was removed and instead
a dependency on ctypes >=0.3 added, which handled platform-specific
aspects of accessing data and calling functions.

The new interface does not expose JIT (which is a shim around MCJIT),
as well as the interpreter (which can't handle a lot of valid IR).

Llvm_executionengine.add_global_mapping is currently unusable
due to PR20656.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220957 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Peter Zotov 2014-10-31 09:05:36 +00:00
parent 130901ddf1
commit ced3d172f8
7 changed files with 168 additions and 580 deletions

View File

@ -55,7 +55,8 @@ endif
endif
# Tools
OCAMLCFLAGS += -I $(OcamlDir)
OCAMLCFLAGS += -I $(OcamlDir) $(addprefix -package ,$(FindlibPackages))
ifndef IS_CLEANING_TARGET
ifneq ($(ObjectsO),)
OCAMLAFLAGS += $(patsubst %,-cclib %, \

View File

@ -15,5 +15,6 @@ LEVEL := ../../..
LIBRARYNAME := llvm_executionengine
UsedComponents := executionengine mcjit interpreter native
UsedOcamlInterfaces := llvm llvm_target
FindlibPackages := ctypes
include ../Makefile.ocaml

View File

@ -27,118 +27,8 @@
void llvm_raise(value Prototype, char *Message);
/*--... Operations on generic values .......................................--*/
#define Genericvalue_val(v) (*(LLVMGenericValueRef *)(Data_custom_val(v)))
static void llvm_finalize_generic_value(value GenVal) {
LLVMDisposeGenericValue(Genericvalue_val(GenVal));
}
static struct custom_operations generic_value_ops = {
(char *) "Llvm_executionengine.GenericValue.t",
llvm_finalize_generic_value,
custom_compare_default,
custom_hash_default,
custom_serialize_default,
custom_deserialize_default,
custom_compare_ext_default
};
static value alloc_generic_value(LLVMGenericValueRef Ref) {
value Val = alloc_custom(&generic_value_ops, sizeof(LLVMGenericValueRef), 0, 1);
Genericvalue_val(Val) = Ref;
return Val;
}
/* Llvm.lltype -> float -> t */
CAMLprim value llvm_genericvalue_of_float(LLVMTypeRef Ty, value N) {
CAMLparam1(N);
CAMLreturn(alloc_generic_value(
LLVMCreateGenericValueOfFloat(Ty, Double_val(N))));
}
/* 'a -> t */
CAMLprim value llvm_genericvalue_of_pointer(value V) {
CAMLparam1(V);
CAMLreturn(alloc_generic_value(LLVMCreateGenericValueOfPointer(Op_val(V))));
}
/* Llvm.lltype -> int -> t */
CAMLprim value llvm_genericvalue_of_int(LLVMTypeRef Ty, value Int) {
return alloc_generic_value(LLVMCreateGenericValueOfInt(Ty, Int_val(Int), 1));
}
/* Llvm.lltype -> int32 -> t */
CAMLprim value llvm_genericvalue_of_int32(LLVMTypeRef Ty, value Int32) {
CAMLparam1(Int32);
CAMLreturn(alloc_generic_value(
LLVMCreateGenericValueOfInt(Ty, Int32_val(Int32), 1)));
}
/* Llvm.lltype -> nativeint -> t */
CAMLprim value llvm_genericvalue_of_nativeint(LLVMTypeRef Ty, value NatInt) {
CAMLparam1(NatInt);
CAMLreturn(alloc_generic_value(
LLVMCreateGenericValueOfInt(Ty, Nativeint_val(NatInt), 1)));
}
/* Llvm.lltype -> int64 -> t */
CAMLprim value llvm_genericvalue_of_int64(LLVMTypeRef Ty, value Int64) {
CAMLparam1(Int64);
CAMLreturn(alloc_generic_value(
LLVMCreateGenericValueOfInt(Ty, Int64_val(Int64), 1)));
}
/* Llvm.lltype -> t -> float */
CAMLprim value llvm_genericvalue_as_float(LLVMTypeRef Ty, value GenVal) {
CAMLparam1(GenVal);
CAMLreturn(copy_double(
LLVMGenericValueToFloat(Ty, Genericvalue_val(GenVal))));
}
/* t -> 'a */
CAMLprim value llvm_genericvalue_as_pointer(value GenVal) {
return Val_op(LLVMGenericValueToPointer(Genericvalue_val(GenVal)));
}
/* t -> int */
CAMLprim value llvm_genericvalue_as_int(value GenVal) {
assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 8 * sizeof(value)
&& "Generic value too wide to treat as an int!");
return Val_int(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1));
}
/* t -> int32 */
CAMLprim value llvm_genericvalue_as_int32(value GenVal) {
CAMLparam1(GenVal);
assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 32
&& "Generic value too wide to treat as an int32!");
CAMLreturn(copy_int32(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1)));
}
/* t -> int64 */
CAMLprim value llvm_genericvalue_as_int64(value GenVal) {
CAMLparam1(GenVal);
assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 64
&& "Generic value too wide to treat as an int64!");
CAMLreturn(copy_int64(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1)));
}
/* t -> nativeint */
CAMLprim value llvm_genericvalue_as_nativeint(value GenVal) {
CAMLparam1(GenVal);
assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 8 * sizeof(value)
&& "Generic value too wide to treat as a nativeint!");
CAMLreturn(copy_nativeint(LLVMGenericValueToInt(Genericvalue_val(GenVal),1)));
}
/*--... Operations on execution engines ....................................--*/
/* unit -> bool */
CAMLprim value llvm_initialize_native_target(value Unit) {
LLVMLinkInInterpreter();
CAMLprim value llvm_ee_initialize(value Unit) {
LLVMLinkInMCJIT();
return Val_bool(!LLVMInitializeNativeTarget() &&
@ -146,48 +36,22 @@ CAMLprim value llvm_initialize_native_target(value Unit) {
!LLVMInitializeNativeAsmPrinter());
}
/* llmodule -> ExecutionEngine.t */
CAMLprim LLVMExecutionEngineRef llvm_ee_create(LLVMModuleRef M) {
LLVMExecutionEngineRef Interp;
char *Error;
if (LLVMCreateExecutionEngineForModule(&Interp, M, &Error))
llvm_raise(*caml_named_value("Llvm_executionengine.Error"), Error);
return Interp;
}
/* llmodule -> ExecutionEngine.t */
CAMLprim LLVMExecutionEngineRef
llvm_ee_create_interpreter(LLVMModuleRef M) {
LLVMExecutionEngineRef Interp;
char *Error;
if (LLVMCreateInterpreterForModule(&Interp, M, &Error))
llvm_raise(*caml_named_value("Llvm_executionengine.Error"), Error);
return Interp;
}
/* llmodule -> int -> ExecutionEngine.t */
CAMLprim LLVMExecutionEngineRef
llvm_ee_create_jit(LLVMModuleRef M, value OptLevel) {
LLVMExecutionEngineRef JIT;
char *Error;
if (LLVMCreateJITCompilerForModule(&JIT, M, Int_val(OptLevel), &Error))
llvm_raise(*caml_named_value("Llvm_executionengine.Error"), Error);
return JIT;
}
/* llmodule -> llcompileroption -> ExecutionEngine.t */
CAMLprim LLVMExecutionEngineRef
llvm_ee_create_mcjit(LLVMModuleRef M, value OptRecord) {
CAMLprim LLVMExecutionEngineRef llvm_ee_create(value OptRecordOpt, LLVMModuleRef M) {
value OptRecord;
LLVMExecutionEngineRef MCJIT;
char *Error;
struct LLVMMCJITCompilerOptions Options;
LLVMInitializeMCJITCompilerOptions(&Options, sizeof(Options));
if (OptRecordOpt != Val_int(0)) {
OptRecord = Field(OptRecordOpt, 0);
Options.OptLevel = Int_val(Field(OptRecord, 0));
Options.CodeModel = Int_val(Field(OptRecord, 1));
Options.NoFramePointerElim = Int_val(Field(OptRecord, 2));
Options.EnableFastISel = Int_val(Field(OptRecord, 3));
Options.MCJMM = NULL;
}
if (LLVMCreateMCJITCompilerForModule(&MCJIT, M, &Options,
sizeof(Options), &Error))
@ -208,43 +72,12 @@ CAMLprim value llvm_ee_add_module(LLVMModuleRef M, LLVMExecutionEngineRef EE) {
}
/* llmodule -> ExecutionEngine.t -> llmodule */
CAMLprim LLVMModuleRef llvm_ee_remove_module(LLVMModuleRef M,
LLVMExecutionEngineRef EE) {
CAMLprim value llvm_ee_remove_module(LLVMModuleRef M, LLVMExecutionEngineRef EE) {
LLVMModuleRef RemovedModule;
char *Error;
if (LLVMRemoveModule(EE, M, &RemovedModule, &Error))
llvm_raise(*caml_named_value("Llvm_executionengine.Error"), Error);
return RemovedModule;
}
/* string -> ExecutionEngine.t -> llvalue option */
CAMLprim value llvm_ee_find_function(value Name, LLVMExecutionEngineRef EE) {
CAMLparam1(Name);
CAMLlocal1(Option);
LLVMValueRef Found;
if (LLVMFindFunction(EE, String_val(Name), &Found))
CAMLreturn(Val_unit);
Option = alloc(1, 0);
Field(Option, 0) = Val_op(Found);
CAMLreturn(Option);
}
/* llvalue -> GenericValue.t array -> ExecutionEngine.t -> GenericValue.t */
CAMLprim value llvm_ee_run_function(LLVMValueRef F, value Args,
LLVMExecutionEngineRef EE) {
unsigned NumArgs;
LLVMGenericValueRef Result, *GVArgs;
unsigned I;
NumArgs = Wosize_val(Args);
GVArgs = (LLVMGenericValueRef*) malloc(NumArgs * sizeof(LLVMGenericValueRef));
for (I = 0; I != NumArgs; ++I)
GVArgs[I] = Genericvalue_val(Field(Args, I));
Result = LLVMRunFunction(EE, F, NumArgs, GVArgs);
free(GVArgs);
return alloc_generic_value(Result);
return Val_unit;
}
/* ExecutionEngine.t -> unit */
@ -259,66 +92,6 @@ CAMLprim value llvm_ee_run_static_dtors(LLVMExecutionEngineRef EE) {
return Val_unit;
}
/* llvalue -> string array -> (string * string) array -> ExecutionEngine.t ->
int */
CAMLprim value llvm_ee_run_function_as_main(LLVMValueRef F,
value Args, value Env,
LLVMExecutionEngineRef EE) {
CAMLparam2(Args, Env);
int I, NumArgs, NumEnv, EnvSize, Result;
const char **CArgs, **CEnv;
char *CEnvBuf, *Pos;
NumArgs = Wosize_val(Args);
NumEnv = Wosize_val(Env);
/* Build the environment. */
CArgs = (const char **) malloc(NumArgs * sizeof(char*));
for (I = 0; I != NumArgs; ++I)
CArgs[I] = String_val(Field(Args, I));
/* Compute the size of the environment string buffer. */
for (I = 0, EnvSize = 0; I != NumEnv; ++I) {
EnvSize += strlen(String_val(Field(Field(Env, I), 0))) + 1;
EnvSize += strlen(String_val(Field(Field(Env, I), 1))) + 1;
}
/* Build the environment. */
CEnv = (const char **) malloc((NumEnv + 1) * sizeof(char*));
CEnvBuf = (char*) malloc(EnvSize);
Pos = CEnvBuf;
for (I = 0; I != NumEnv; ++I) {
char *Name = String_val(Field(Field(Env, I), 0)),
*Value = String_val(Field(Field(Env, I), 1));
int NameLen = strlen(Name),
ValueLen = strlen(Value);
CEnv[I] = Pos;
memcpy(Pos, Name, NameLen);
Pos += NameLen;
*Pos++ = '=';
memcpy(Pos, Value, ValueLen);
Pos += ValueLen;
*Pos++ = '\0';
}
CEnv[NumEnv] = NULL;
Result = LLVMRunFunctionAsMain(EE, F, NumArgs, CArgs, CEnv);
free(CArgs);
free(CEnv);
free(CEnvBuf);
CAMLreturn(Val_int(Result));
}
/* llvalue -> ExecutionEngine.t -> unit */
CAMLprim value llvm_ee_free_machine_code(LLVMValueRef F,
LLVMExecutionEngineRef EE) {
LLVMFreeMachineCodeForFunction(EE, F);
return Val_unit;
}
extern value llvm_alloc_data_layout(LLVMTargetDataRef TargetData);
/* ExecutionEngine.t -> Llvm_target.DataLayout.t */
@ -334,3 +107,16 @@ CAMLprim value llvm_ee_get_data_layout(LLVMExecutionEngineRef EE) {
return DataLayout;
}
/* Llvm.llvalue -> int64 -> llexecutionengine -> unit */
CAMLprim value llvm_ee_add_global_mapping(LLVMValueRef Global, value Ptr,
LLVMExecutionEngineRef EE) {
LLVMAddGlobalMapping(EE, Global, (void*) (Int64_val(Ptr)));
return Val_unit;
}
/* Llvm.llvalue -> llexecutionengine -> int64 */
CAMLprim value llvm_ee_get_pointer_to_global(LLVMValueRef Global,
LLVMExecutionEngineRef EE) {
return caml_copy_int64((int64_t) LLVMGetPointerToGlobal(EE, Global));
}

View File

@ -11,115 +11,50 @@ exception Error of string
let () = Callback.register_exception "Llvm_executionengine.Error" (Error "")
module CodeModel = struct
type t =
| Default
| JIT_default
| Small
| Kernel
| Medium
| Large
end
external initialize : unit -> bool
= "llvm_ee_initialize"
module GenericValue = struct
type t
type llexecutionengine
external of_float: Llvm.lltype -> float -> t
= "llvm_genericvalue_of_float"
external of_pointer: 'a -> t
= "llvm_genericvalue_of_pointer"
external of_int32: Llvm.lltype -> int32 -> t
= "llvm_genericvalue_of_int32"
external of_int: Llvm.lltype -> int -> t
= "llvm_genericvalue_of_int"
external of_nativeint: Llvm.lltype -> nativeint -> t
= "llvm_genericvalue_of_nativeint"
external of_int64: Llvm.lltype -> int64 -> t
= "llvm_genericvalue_of_int64"
external as_float: Llvm.lltype -> t -> float
= "llvm_genericvalue_as_float"
external as_pointer: t -> 'a
= "llvm_genericvalue_as_pointer"
external as_int32: t -> int32
= "llvm_genericvalue_as_int32"
external as_int: t -> int
= "llvm_genericvalue_as_int"
external as_nativeint: t -> nativeint
= "llvm_genericvalue_as_nativeint"
external as_int64: t -> int64
= "llvm_genericvalue_as_int64"
end
module ExecutionEngine = struct
type t
type compileroptions = {
type llcompileroptions = {
opt_level: int;
code_model: CodeModel.t;
code_model: Llvm_target.CodeModel.t;
no_framepointer_elim: bool;
enable_fast_isel: bool;
}
}
let default_compiler_options = {
let default_compiler_options = {
opt_level = 0;
code_model = CodeModel.JIT_default;
code_model = Llvm_target.CodeModel.JITDefault;
no_framepointer_elim = false;
enable_fast_isel = false }
external create: Llvm.llmodule -> t
external create : ?options:llcompileroptions -> Llvm.llmodule -> llexecutionengine
= "llvm_ee_create"
external create_interpreter: Llvm.llmodule -> t
= "llvm_ee_create_interpreter"
external create_jit: Llvm.llmodule -> int -> t
= "llvm_ee_create_jit"
external create_mcjit: Llvm.llmodule -> compileroptions -> t
= "llvm_ee_create_mcjit"
external dispose: t -> unit
external dispose : llexecutionengine -> unit
= "llvm_ee_dispose"
external add_module: Llvm.llmodule -> t -> unit
external add_module : Llvm.llmodule -> llexecutionengine -> unit
= "llvm_ee_add_module"
external remove_module: Llvm.llmodule -> t -> Llvm.llmodule
external remove_module : Llvm.llmodule -> llexecutionengine -> unit
= "llvm_ee_remove_module"
external find_function: string -> t -> Llvm.llvalue option
= "llvm_ee_find_function"
external run_function: Llvm.llvalue -> GenericValue.t array -> t ->
GenericValue.t
= "llvm_ee_run_function"
external run_static_ctors: t -> unit
external run_static_ctors : llexecutionengine -> unit
= "llvm_ee_run_static_ctors"
external run_static_dtors: t -> unit
external run_static_dtors : llexecutionengine -> unit
= "llvm_ee_run_static_dtors"
external run_function_as_main: Llvm.llvalue -> string array ->
(string * string) array -> t -> int
= "llvm_ee_run_function_as_main"
external free_machine_code: Llvm.llvalue -> t -> unit
= "llvm_ee_free_machine_code"
external data_layout : t -> Llvm_target.DataLayout.t
external data_layout : llexecutionengine -> Llvm_target.DataLayout.t
= "llvm_ee_get_data_layout"
external add_global_mapping_ : Llvm.llvalue -> int64 -> llexecutionengine -> unit
= "llvm_ee_add_global_mapping"
external get_pointer_to_global_ : Llvm.llvalue -> llexecutionengine -> int64
= "llvm_ee_get_pointer_to_global"
(* The following are not bound. Patches are welcome.
let add_global_mapping llval ptr ee =
add_global_mapping_ llval (Ctypes.raw_address_of_ptr (Ctypes.to_voidp ptr)) ee
add_global_mapping: llvalue -> llgenericvalue -> t -> unit
clear_all_global_mappings: t -> unit
update_global_mapping: llvalue -> llgenericvalue -> t -> unit
get_pointer_to_global_if_available: llvalue -> t -> llgenericvalue
get_pointer_to_global: llvalue -> t -> llgenericvalue
get_pointer_to_function: llvalue -> t -> llgenericvalue
get_pointer_to_function_or_stub: llvalue -> t -> llgenericvalue
get_global_value_at_address: llgenericvalue -> t -> llvalue option
store_value_to_memory: llgenericvalue -> llgenericvalue -> lltype -> unit
initialize_memory: llvalue -> llgenericvalue -> t -> unit
recompile_and_relink_function: llvalue -> t -> llgenericvalue
get_or_emit_global_variable: llvalue -> t -> llgenericvalue
disable_lazy_compilation: t -> unit
lazy_compilation_enabled: t -> bool
install_lazy_function_creator: (string -> llgenericvalue) -> t -> unit
let get_pointer_to_global llval typ ee =
Ctypes.coerce (let open Ctypes in ptr void) typ
(Ctypes.ptr_of_raw_address (get_pointer_to_global_ llval ee))
(* The following are not bound. Patches are welcome.
target_machine : llexecutionengine -> Llvm_target.TargetMachine.t
*)
end
external initialize_native_target : unit -> bool
= "llvm_initialize_native_target"

View File

@ -14,176 +14,71 @@
exception Error of string
(** The JIT code model. See [llvm::CodeModel::Model]. *)
module CodeModel : sig
type t =
| Default
| JIT_default
| Small
| Kernel
| Medium
| Large
end
(** [initialize ()] initializes the backend corresponding to the host.
Returns [true] if initialization is successful; [false] indicates
that there is no such backend or it is unable to emit object code
via MCJIT. *)
val initialize : unit -> bool
module GenericValue: sig
(** [GenericValue.t] is a boxed union type used to portably pass arguments to
and receive values from the execution engine. It supports only a limited
selection of types; for more complex argument types, it is necessary to
generate a stub function by hand or to pass parameters by reference.
See the struct [llvm::GenericValue]. *)
type t
(** [of_float fpty n] boxes the float [n] in a float-valued generic value
according to the floating point type [fpty]. See the fields
[llvm::GenericValue::DoubleVal] and [llvm::GenericValue::FloatVal]. *)
val of_float : Llvm.lltype -> float -> t
(** [of_pointer v] boxes the pointer value [v] in a generic value. See the
field [llvm::GenericValue::PointerVal]. *)
val of_pointer : 'a -> t
(** [of_int32 n w] boxes the int32 [i] in a generic value with the bitwidth
[w]. See the field [llvm::GenericValue::IntVal]. *)
val of_int32 : Llvm.lltype -> int32 -> t
(** [of_int n w] boxes the int [i] in a generic value with the bitwidth
[w]. See the field [llvm::GenericValue::IntVal]. *)
val of_int : Llvm.lltype -> int -> t
(** [of_natint n w] boxes the native int [i] in a generic value with the
bitwidth [w]. See the field [llvm::GenericValue::IntVal]. *)
val of_nativeint : Llvm.lltype -> nativeint -> t
(** [of_int64 n w] boxes the int64 [i] in a generic value with the bitwidth
[w]. See the field [llvm::GenericValue::IntVal]. *)
val of_int64 : Llvm.lltype -> int64 -> t
(** [as_float fpty gv] unboxes the floating point-valued generic value [gv] of
floating point type [fpty]. See the fields [llvm::GenericValue::DoubleVal]
and [llvm::GenericValue::FloatVal]. *)
val as_float : Llvm.lltype -> t -> float
(** [as_pointer gv] unboxes the pointer-valued generic value [gv]. See the
field [llvm::GenericValue::PointerVal]. *)
val as_pointer : t -> 'a
(** [as_int32 gv] unboxes the integer-valued generic value [gv] as an [int32].
Is invalid if [gv] has a bitwidth greater than 32 bits. See the field
[llvm::GenericValue::IntVal]. *)
val as_int32 : t -> int32
(** [as_int gv] unboxes the integer-valued generic value [gv] as an [int].
Is invalid if [gv] has a bitwidth greater than the host bit width (but the
most significant bit may be lost). See the field
[llvm::GenericValue::IntVal]. *)
val as_int : t -> int
(** [as_natint gv] unboxes the integer-valued generic value [gv] as a
[nativeint]. Is invalid if [gv] has a bitwidth greater than
[nativeint]. See the field [llvm::GenericValue::IntVal]. *)
val as_nativeint : t -> nativeint
(** [as_int64 gv] returns the integer-valued generic value [gv] as an [int64].
Is invalid if [gv] has a bitwidth greater than [int64]. See the field
[llvm::GenericValue::IntVal]. *)
val as_int64 : t -> int64
end
module ExecutionEngine: sig
(** An execution engine is either a JIT compiler or an interpreter, capable of
(** An execution engine is either a JIT compiler or an interpreter, capable of
directly loading an LLVM module and executing its functions without first
invoking a static compiler and generating a native executable. *)
type t
type llexecutionengine
(** MCJIT compiler options. See [llvm::TargetOptions]. *)
type compileroptions = {
(** MCJIT compiler options. See [llvm::TargetOptions]. *)
type llcompileroptions = {
opt_level: int;
code_model: CodeModel.t;
code_model: Llvm_target.CodeModel.t;
no_framepointer_elim: bool;
enable_fast_isel: bool;
}
}
(** Default MCJIT compiler options:
(** Default MCJIT compiler options:
[{ opt_level = 0; code_model = CodeModel.JIT_default;
no_framepointer_elim = false; enable_fast_isel = false }] *)
val default_compiler_options : compileroptions
val default_compiler_options : llcompileroptions
(** [create m] creates a new execution engine, taking ownership of the
module [m] if successful. Creates a JIT if possible, else falls back to an
interpreter. Raises [Error msg] if an error occurrs. The execution engine
is not garbage collected and must be destroyed with [dispose ee].
See the function [llvm::EngineBuilder::create]. *)
val create : Llvm.llmodule -> t
(** [create_interpreter m] creates a new interpreter, taking ownership of the
module [m] if successful. Raises [Error msg] if an error occurrs. The
execution engine is not garbage collected and must be destroyed with
[dispose ee].
See the function [llvm::EngineBuilder::create]. *)
val create_interpreter : Llvm.llmodule -> t
(** [create_jit m optlevel] creates a new JIT (just-in-time compiler), taking
(** [create m optlevel] creates a new MCJIT just-in-time compiler, taking
ownership of the module [m] if successful with the desired optimization
level [optlevel]. Raises [Error msg] if an error occurrs. The execution
engine is not garbage collected and must be destroyed with [dispose ee].
See the function [llvm::EngineBuilder::create].
Deprecated; use {!create_mcjit}. This function is a shim for {!create_mcjit}. *)
val create_jit : Llvm.llmodule -> int -> t
Run {!initialize} before using this function.
(** [create_jit m optlevel] creates a new JIT (just-in-time compiler), taking
ownership of the module [m] if successful with the desired optimization
level [optlevel]. Raises [Error msg] if an error occurrs. The execution
engine is not garbage collected and must be destroyed with [dispose ee].
See the function [llvm::EngineBuilder::create]. *)
val create_mcjit : Llvm.llmodule -> compileroptions -> t
val create : ?options:llcompileroptions -> Llvm.llmodule -> llexecutionengine
(** [dispose ee] releases the memory used by the execution engine and must be
(** [dispose ee] releases the memory used by the execution engine and must be
invoked to avoid memory leaks. *)
val dispose : t -> unit
val dispose : llexecutionengine -> unit
(** [add_module m ee] adds the module [m] to the execution engine [ee]. *)
val add_module : Llvm.llmodule -> t -> unit
(** [add_module m ee] adds the module [m] to the execution engine [ee]. *)
val add_module : Llvm.llmodule -> llexecutionengine -> unit
(** [remove_module m ee] removes the module [m] from the execution engine
[ee], disposing of [m] and the module referenced by [mp]. Raises
[Error msg] if an error occurs. *)
val remove_module : Llvm.llmodule -> t -> Llvm.llmodule
(** [remove_module m ee] removes the module [m] from the execution engine
[ee]. Raises [Error msg] if an error occurs. *)
val remove_module : Llvm.llmodule -> llexecutionengine -> unit
(** [find_function n ee] finds the function named [n] defined in any of the
modules owned by the execution engine [ee]. Returns [None] if the function
is not found and [Some f] otherwise. *)
val find_function : string -> t -> Llvm.llvalue option
(** [run_function f args ee] synchronously executes the function [f] with the
arguments [args], which must be compatible with the parameter types. *)
val run_function : Llvm.llvalue -> GenericValue.t array -> t ->
GenericValue.t
(** [run_static_ctors ee] executes the static constructors of each module in
(** [run_static_ctors ee] executes the static constructors of each module in
the execution engine [ee]. *)
val run_static_ctors : t -> unit
val run_static_ctors : llexecutionengine -> unit
(** [run_static_dtors ee] executes the static destructors of each module in
(** [run_static_dtors ee] executes the static destructors of each module in
the execution engine [ee]. *)
val run_static_dtors : t -> unit
val run_static_dtors : llexecutionengine -> unit
(** [run_function_as_main f args env ee] executes the function [f] as a main
function, passing it [argv] and [argc] according to the string array
[args], and [envp] as specified by the array [env]. Returns the integer
return value of the function. *)
val run_function_as_main : Llvm.llvalue -> string array ->
(string * string) array -> t -> int
(** [data_layout ee] is the data layout of the execution engine [ee]. *)
val data_layout : llexecutionengine -> Llvm_target.DataLayout.t
(** [free_machine_code f ee] releases the memory in the execution engine [ee]
used to store the machine code for the function [f]. *)
val free_machine_code : Llvm.llvalue -> t -> unit
(** [add_global_mapping gv ptr ee] tells the execution engine [ee] that
the global [gv] is at the specified location [ptr], which must outlive
[gv] and [ee].
All uses of [gv] in the compiled code will refer to [ptr]. *)
val add_global_mapping : Llvm.llvalue -> 'a Ctypes.ptr -> llexecutionengine -> unit
(** [data_layout ee] is the data layout of the execution engine [ee]. *)
val data_layout : t -> Llvm_target.DataLayout.t
end
(** [initialize_native_target ()] initializes the native target corresponding
to the host. Returns [true] if initialization is {b not} done. *)
val initialize_native_target : unit -> bool
(** [get_pointer_to_global gv typ ee] returns the value of the global
variable [gv] in the execution engine [ee] as type [typ], which may
be a pointer type (e.g. [int ptr typ]) for global variables or
a function (e.g. [(int -> int) typ]) type for functions, and which
will be live as long as [gv] and [ee] are. *)
val get_pointer_to_global : Llvm.llvalue -> 'a Ctypes.typ -> llexecutionengine -> 'a

View File

@ -31,7 +31,7 @@ package "bitwriter" (
)
package "executionengine" (
requires = "llvm,llvm.target"
requires = "llvm,llvm.target,ctypes.foreign"
version = "@PACKAGE_VERSION@"
description = "JIT and Interpreter for LLVM"
archive(byte) = "llvm_executionengine.cma"

View File

@ -19,20 +19,17 @@ let i64_type = Llvm.i64_type context
let double_type = Llvm.double_type context
let () =
assert (Llvm_executionengine.initialize_native_target ())
assert (Llvm_executionengine.initialize ())
let bomb msg =
prerr_endline msg;
exit 2
let define_main_fn m retval =
let fn =
let str_arr_type = pointer_type (pointer_type i8_type) in
define_function "main" (function_type i32_type [| i32_type;
str_arr_type;
str_arr_type |]) m in
let define_getglobal m pg =
let fn = define_function "getglobal" (function_type i32_type [||]) m in
let b = builder_at_end (global_context ()) (entry_block fn) in
ignore (build_ret (const_int i32_type retval) b);
let g = build_call pg [||] "" b in
ignore (build_ret g b);
fn
let define_plus m =
@ -40,94 +37,67 @@ let define_plus m =
i32_type |]) m in
let b = builder_at_end (global_context ()) (entry_block fn) in
let add = build_add (param fn 0) (param fn 1) "sum" b in
ignore (build_ret add b)
ignore (build_ret add b);
fn
let test_genericvalue () =
let tu = (1, 2) in
let ptrgv = GenericValue.of_pointer tu in
assert (tu = GenericValue.as_pointer ptrgv);
let test_executionengine () =
let open Ctypes in
let fpgv = GenericValue.of_float double_type 2. in
assert (2. = GenericValue.as_float double_type fpgv);
let intgv = GenericValue.of_int i32_type 3 in
assert (3 = GenericValue.as_int intgv);
let i32gv = GenericValue.of_int32 i32_type (Int32.of_int 4) in
assert ((Int32.of_int 4) = GenericValue.as_int32 i32gv);
let nigv = GenericValue.of_nativeint i32_type (Nativeint.of_int 5) in
assert ((Nativeint.of_int 5) = GenericValue.as_nativeint nigv);
let i64gv = GenericValue.of_int64 i64_type (Int64.of_int 6) in
assert ((Int64.of_int 6) = GenericValue.as_int64 i64gv)
let test_executionengine engine =
(* create *)
let m = create_module (global_context ()) "test_module" in
let main = define_main_fn m 42 in
let ee = create m in
(* add plus *)
let plus = define_plus m in
(* add module *)
let m2 = create_module (global_context ()) "test_module2" in
define_plus m2;
add_module m2 ee;
let ee =
match engine with
| `Interpreter -> ExecutionEngine.create_interpreter m
| `JIT -> ExecutionEngine.create_jit m 0
| `MCJIT -> ExecutionEngine.create_mcjit m ExecutionEngine.default_compiler_options
in
ExecutionEngine.add_module m2 ee;
(* add global mapping *)
(* BROKEN: see PR20656 *)
(* let g = declare_function "g" (function_type i32_type [||]) m2 in
let cg = coerce (Foreign.funptr (void @-> returning int32_t)) (ptr void)
(fun () -> 42l) in
add_global_mapping g cg ee;
(* check g *)
let cg' = get_pointer_to_global g (ptr void) ee in
if 0 <> ptr_compare cg cg' then bomb "int pointers to g differ";
(* add getglobal *)
let getglobal = define_getglobal m2 g in*)
(* run_static_ctors *)
ExecutionEngine.run_static_ctors ee;
run_static_ctors ee;
(* run_function_as_main *)
let res = ExecutionEngine.run_function_as_main main [|"test"|] [||] ee in
if 42 != res then bomb "main did not return 42";
(* call plus *)
let cplusty = Foreign.funptr (int32_t @-> int32_t @-> returning int32_t) in
let cplus = get_pointer_to_global plus cplusty ee in
if 4l <> cplus 2l 2l then bomb "plus didn't work";
(* free_machine_code *)
ExecutionEngine.free_machine_code main ee;
(* find_function *)
match ExecutionEngine.find_function "dne" ee with
| Some _ -> raise (Failure "find_function 'dne' failed")
| None ->
match ExecutionEngine.find_function "plus" ee with
| None -> raise (Failure "find_function 'plus' failed")
| Some plus ->
begin match engine with
| `MCJIT -> () (* Currently can only invoke 0-ary functions *)
| `JIT -> () (* JIT is now a shim around MCJIT, jokes on you *)
| _ ->
(* run_function *)
let res = ExecutionEngine.run_function plus
[| GenericValue.of_int i32_type 2;
GenericValue.of_int i32_type 2 |]
ee in
if 4 != GenericValue.as_int res then bomb "plus did not work";
end;
(* call getglobal *)
(* let cgetglobalty = Foreign.funptr (void @-> returning int32_t) in
let cgetglobal = get_pointer_to_global getglobal cgetglobalty ee in
if 42l <> cgetglobal () then bomb "getglobal didn't work"; *)
(* remove_module *)
Llvm.dispose_module (ExecutionEngine.remove_module m2 ee);
remove_module m2 ee;
dispose_module m2;
(* run_static_dtors *)
ExecutionEngine.run_static_dtors ee;
run_static_dtors ee;
(* Show that the data layout binding links and runs.*)
let dl = ExecutionEngine.data_layout ee in
let dl = data_layout ee in
(* Demonstrate that a garbage pointer wasn't returned. *)
let ty = DataLayout.intptr_type context dl in
if ty != i32_type && ty != i64_type then bomb "target_data did not work";
(* dispose *)
ExecutionEngine.dispose ee
dispose ee
let () =
test_genericvalue ();
test_executionengine `Interpreter;
test_executionengine `JIT;
test_executionengine `MCJIT;
()
test_executionengine ();
Gc.compact ()