Add (currently disabled) support to the instruction selector to only insert

FP_REG_KILL instructions at the end of blocks involved with critical edges.

Fix a bug where FP_REG_KILL instructions weren't inserted in fall through
unconditional branches.  Perhaps this will fix some linscan problems?


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11019 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-01-30 22:13:44 +00:00
parent 49a5aaacef
commit cf93cdde56
2 changed files with 94 additions and 8 deletions

View File

@ -28,8 +28,11 @@
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
//#define SMART_FP 1
/// BMI - A special BuildMI variant that takes an iterator to insert the
/// instruction at as well as a basic block. This is the version for when you
/// have a destination register in mind.
@ -843,7 +846,9 @@ void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
///
void ISel::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0) {
#ifndef SMART_FP
BuildMI(BB, X86::FP_REG_KILL, 0);
#endif
BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
return;
}
@ -874,7 +879,9 @@ void ISel::visitReturnInst(ReturnInst &I) {
visitInstruction(I);
}
// Emit a 'ret' instruction
#ifndef SMART_FP
BuildMI(BB, X86::FP_REG_KILL, 0);
#endif
BuildMI(BB, X86::RET, 0);
}
@ -885,6 +892,40 @@ static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
return I != BB->getParent()->end() ? &*I : 0;
}
/// RequiresFPRegKill - The floating point stackifier pass cannot insert
/// compensation code on critical edges. As such, it requires that we kill all
/// FP registers on the exit from any blocks that either ARE critical edges, or
/// branch to a block that has incoming critical edges.
///
/// Note that this kill instruction will eventually be eliminated when
/// restrictions in the stackifier are relaxed.
///
static bool RequiresFPRegKill(const BasicBlock *BB) {
#ifdef SMART_FP
for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
const BasicBlock *Succ = *SI;
pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
++PI; // Block have at least one predecessory
if (PI != PE) { // If it has exactly one, this isn't crit edge
// If this block has more than one predecessor, check all of the
// predecessors to see if they have multiple successors. If so, then the
// block we are analyzing needs an FPRegKill.
for (PI = pred_begin(Succ); PI != PE; ++PI) {
const BasicBlock *Pred = *PI;
succ_const_iterator SI2 = succ_begin(Pred);
++SI2; // There must be at least one successor of this block.
if (SI2 != succ_end(Pred))
return true; // Yes, we must insert the kill on this edge.
}
}
}
// If we got this far, there is no need to insert the kill instruction.
return false;
#else
return true;
#endif
}
/// visitBranchInst - Handle conditional and unconditional branches here. Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
@ -894,10 +935,10 @@ void ISel::visitBranchInst(BranchInst &BI) {
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
if (!BI.isConditional()) { // Unconditional branch?
if (BI.getSuccessor(0) != NextBB) {
if (RequiresFPRegKill(BI.getParent()))
BuildMI(BB, X86::FP_REG_KILL, 0);
if (BI.getSuccessor(0) != NextBB)
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
}
return;
}
@ -908,6 +949,7 @@ void ISel::visitBranchInst(BranchInst &BI) {
// computed some other way...
unsigned condReg = getReg(BI.getCondition());
BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
if (RequiresFPRegKill(BI.getParent()))
BuildMI(BB, X86::FP_REG_KILL, 0);
if (BI.getSuccessor(1) == NextBB) {
if (BI.getSuccessor(0) != NextBB)
@ -947,6 +989,7 @@ void ISel::visitBranchInst(BranchInst &BI) {
X86::JS, X86::JNS },
};
if (RequiresFPRegKill(BI.getParent()))
BuildMI(BB, X86::FP_REG_KILL, 0);
if (BI.getSuccessor(0) != NextBB) {
BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));

View File

@ -28,8 +28,11 @@
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
//#define SMART_FP 1
/// BMI - A special BuildMI variant that takes an iterator to insert the
/// instruction at as well as a basic block. This is the version for when you
/// have a destination register in mind.
@ -843,7 +846,9 @@ void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
///
void ISel::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0) {
#ifndef SMART_FP
BuildMI(BB, X86::FP_REG_KILL, 0);
#endif
BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
return;
}
@ -874,7 +879,9 @@ void ISel::visitReturnInst(ReturnInst &I) {
visitInstruction(I);
}
// Emit a 'ret' instruction
#ifndef SMART_FP
BuildMI(BB, X86::FP_REG_KILL, 0);
#endif
BuildMI(BB, X86::RET, 0);
}
@ -885,6 +892,40 @@ static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
return I != BB->getParent()->end() ? &*I : 0;
}
/// RequiresFPRegKill - The floating point stackifier pass cannot insert
/// compensation code on critical edges. As such, it requires that we kill all
/// FP registers on the exit from any blocks that either ARE critical edges, or
/// branch to a block that has incoming critical edges.
///
/// Note that this kill instruction will eventually be eliminated when
/// restrictions in the stackifier are relaxed.
///
static bool RequiresFPRegKill(const BasicBlock *BB) {
#ifdef SMART_FP
for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
const BasicBlock *Succ = *SI;
pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
++PI; // Block have at least one predecessory
if (PI != PE) { // If it has exactly one, this isn't crit edge
// If this block has more than one predecessor, check all of the
// predecessors to see if they have multiple successors. If so, then the
// block we are analyzing needs an FPRegKill.
for (PI = pred_begin(Succ); PI != PE; ++PI) {
const BasicBlock *Pred = *PI;
succ_const_iterator SI2 = succ_begin(Pred);
++SI2; // There must be at least one successor of this block.
if (SI2 != succ_end(Pred))
return true; // Yes, we must insert the kill on this edge.
}
}
}
// If we got this far, there is no need to insert the kill instruction.
return false;
#else
return true;
#endif
}
/// visitBranchInst - Handle conditional and unconditional branches here. Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
@ -894,10 +935,10 @@ void ISel::visitBranchInst(BranchInst &BI) {
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
if (!BI.isConditional()) { // Unconditional branch?
if (BI.getSuccessor(0) != NextBB) {
if (RequiresFPRegKill(BI.getParent()))
BuildMI(BB, X86::FP_REG_KILL, 0);
if (BI.getSuccessor(0) != NextBB)
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
}
return;
}
@ -908,6 +949,7 @@ void ISel::visitBranchInst(BranchInst &BI) {
// computed some other way...
unsigned condReg = getReg(BI.getCondition());
BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
if (RequiresFPRegKill(BI.getParent()))
BuildMI(BB, X86::FP_REG_KILL, 0);
if (BI.getSuccessor(1) == NextBB) {
if (BI.getSuccessor(0) != NextBB)
@ -947,6 +989,7 @@ void ISel::visitBranchInst(BranchInst &BI) {
X86::JS, X86::JNS },
};
if (RequiresFPRegKill(BI.getParent()))
BuildMI(BB, X86::FP_REG_KILL, 0);
if (BI.getSuccessor(0) != NextBB) {
BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));