Cleanup. Get rid of the old SjLj EH lowering code. No functionality change.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142800 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Bill Wendling 2011-10-24 17:12:36 +00:00
parent e4617c04c8
commit d2dae0cfa0

View File

@ -30,17 +30,13 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;
static cl::opt<bool> DisableOldSjLjEH("disable-old-sjlj-eh", cl::Hidden,
cl::init(true),
cl::desc("Disable the old SjLj EH preparation pass"));
STATISTIC(NumInvokes, "Number of invokes replaced");
STATISTIC(NumUnwinds, "Number of unwinds replaced");
STATISTIC(NumSpilled, "Number of registers live across unwind edges");
namespace {
@ -52,16 +48,12 @@ namespace {
Constant *BuiltinSetjmpFn;
Constant *FrameAddrFn;
Constant *StackAddrFn;
Constant *StackRestoreFn;
Constant *LSDAAddrFn;
Value *PersonalityFn;
Constant *SelectorFn;
Constant *ExceptionFn;
Constant *CallSiteFn;
Constant *DispatchSetupFn;
Constant *FuncCtxFn;
Value *CallSite;
DenseMap<InvokeInst*, BasicBlock*> LPadSuccMap;
public:
static char ID; // Pass identification, replacement for typeid
explicit SjLjEHPass(const TargetLowering *tli = NULL)
@ -79,13 +71,7 @@ namespace {
Value *setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads);
void lowerIncomingArguments(Function &F);
void lowerAcrossUnwindEdges(Function &F, ArrayRef<InvokeInst*> Invokes);
void insertCallSiteStore(Instruction *I, int Number, Value *CallSite);
void markInvokeCallSite(InvokeInst *II, int InvokeNo, Value *CallSite,
SwitchInst *CatchSwitch);
void splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes);
void splitLandingPad(InvokeInst *II);
bool insertSjLjEHSupport(Function &F);
};
} // end anonymous namespace
@ -121,11 +107,8 @@ bool SjLjEHPass::doInitialization(Module &M) {
(Type *)0);
FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp);
LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda);
SelectorFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_selector);
ExceptionFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_exception);
CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite);
DispatchSetupFn
= Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_dispatch_setup);
@ -145,572 +128,16 @@ void SjLjEHPass::insertCallSiteStore(Instruction *I, int Number,
new StoreInst(CallSiteNoC, CallSite, true, I); // volatile
}
/// splitLandingPad - Split a landing pad. This takes considerable care because
/// of PHIs and other nasties. The problem is that the jump table needs to jump
/// to the landing pad block. However, the landing pad block can be jumped to
/// only by an invoke instruction. So we clone the landingpad instruction into
/// its own basic block, have the invoke jump to there. The landingpad
/// instruction's basic block's successor is now the target for the jump table.
///
/// But because of PHI nodes, we need to create another basic block for the jump
/// table to jump to. This is definitely a hack, because the values for the PHI
/// nodes may not be defined on the edge from the jump table. But that's okay,
/// because the jump table is simply a construct to mimic what is happening in
/// the CFG. So the values are mysteriously there, even though there is no value
/// for the PHI from the jump table's edge (hence calling this a hack).
void SjLjEHPass::splitLandingPad(InvokeInst *II) {
SmallVector<BasicBlock*, 2> NewBBs;
SplitLandingPadPredecessors(II->getUnwindDest(), II->getParent(),
".1", ".2", this, NewBBs);
// Create an empty block so that the jump table has something to jump to
// which doesn't have any PHI nodes.
BasicBlock *LPad = NewBBs[0];
BasicBlock *Succ = *succ_begin(LPad);
BasicBlock *JumpTo = BasicBlock::Create(II->getContext(), "jt.land",
LPad->getParent(), Succ);
LPad->getTerminator()->eraseFromParent();
BranchInst::Create(JumpTo, LPad);
BranchInst::Create(Succ, JumpTo);
LPadSuccMap[II] = JumpTo;
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
Value *Val = PN->removeIncomingValue(LPad, false);
PN->addIncoming(Val, JumpTo);
}
}
/// markInvokeCallSite - Insert code to mark the call_site for this invoke
void SjLjEHPass::markInvokeCallSite(InvokeInst *II, int InvokeNo,
Value *CallSite,
SwitchInst *CatchSwitch) {
ConstantInt *CallSiteNoC= ConstantInt::get(Type::getInt32Ty(II->getContext()),
InvokeNo);
// The runtime comes back to the dispatcher with the call_site - 1 in
// the context. Odd, but there it is.
ConstantInt *SwitchValC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
InvokeNo - 1);
// If the unwind edge has phi nodes, split the edge.
if (isa<PHINode>(II->getUnwindDest()->begin())) {
// FIXME: New EH - This if-condition will be always true in the new scheme.
if (II->getUnwindDest()->isLandingPad())
splitLandingPad(II);
else
SplitCriticalEdge(II, 1, this);
// If there are any phi nodes left, they must have a single predecessor.
while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
PN->replaceAllUsesWith(PN->getIncomingValue(0));
PN->eraseFromParent();
}
}
// Insert the store of the call site value
insertCallSiteStore(II, InvokeNo, CallSite);
// Record the call site value for the back end so it stays associated with
// the invoke.
CallInst::Create(CallSiteFn, CallSiteNoC, "", II);
// Add a switch case to our unwind block.
if (BasicBlock *SuccBB = LPadSuccMap[II]) {
CatchSwitch->addCase(SwitchValC, SuccBB);
} else {
CatchSwitch->addCase(SwitchValC, II->getUnwindDest());
}
// We still want this to look like an invoke so we emit the LSDA properly,
// so we don't transform the invoke into a call here.
}
/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
/// we reach blocks we've already seen.
static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
if (!LiveBBs.insert(BB).second) return; // already been here.
static void MarkBlocksLiveIn(BasicBlock *BB,
SmallPtrSet<BasicBlock*, 64> &LiveBBs) {
if (!LiveBBs.insert(BB)) return; // already been here.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
MarkBlocksLiveIn(*PI, LiveBBs);
}
/// splitLiveRangesAcrossInvokes - Each value that is live across an unwind edge
/// we spill into a stack location, guaranteeing that there is nothing live
/// across the unwind edge. This process also splits all critical edges
/// coming out of invoke's.
/// FIXME: Move this function to a common utility file (Local.cpp?) so
/// both SjLj and LowerInvoke can use it.
void SjLjEHPass::
splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes) {
// First step, split all critical edges from invoke instructions.
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
InvokeInst *II = Invokes[i];
SplitCriticalEdge(II, 0, this);
// FIXME: New EH - This if-condition will be always true in the new scheme.
if (II->getUnwindDest()->isLandingPad())
splitLandingPad(II);
else
SplitCriticalEdge(II, 1, this);
assert(!isa<PHINode>(II->getNormalDest()) &&
!isa<PHINode>(II->getUnwindDest()) &&
"Critical edge splitting left single entry phi nodes?");
}
Function *F = Invokes.back()->getParent()->getParent();
// To avoid having to handle incoming arguments specially, we lower each arg
// to a copy instruction in the entry block. This ensures that the argument
// value itself cannot be live across the entry block.
BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
while (isa<AllocaInst>(AfterAllocaInsertPt) &&
isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
++AfterAllocaInsertPt;
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI) {
Type *Ty = AI->getType();
// Aggregate types can't be cast, but are legal argument types, so we have
// to handle them differently. We use an extract/insert pair as a
// lightweight method to achieve the same goal.
if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
Instruction *NI = InsertValueInst::Create(AI, EI, 0);
NI->insertAfter(EI);
AI->replaceAllUsesWith(NI);
// Set the operand of the instructions back to the AllocaInst.
EI->setOperand(0, AI);
NI->setOperand(0, AI);
} else {
// This is always a no-op cast because we're casting AI to AI->getType()
// so src and destination types are identical. BitCast is the only
// possibility.
CastInst *NC = new BitCastInst(
AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
AI->replaceAllUsesWith(NC);
// Set the operand of the cast instruction back to the AllocaInst.
// Normally it's forbidden to replace a CastInst's operand because it
// could cause the opcode to reflect an illegal conversion. However,
// we're replacing it here with the same value it was constructed with.
// We do this because the above replaceAllUsesWith() clobbered the
// operand, but we want this one to remain.
NC->setOperand(0, AI);
}
}
// Finally, scan the code looking for instructions with bad live ranges.
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
// Ignore obvious cases we don't have to handle. In particular, most
// instructions either have no uses or only have a single use inside the
// current block. Ignore them quickly.
Instruction *Inst = II;
if (Inst->use_empty()) continue;
if (Inst->hasOneUse() &&
cast<Instruction>(Inst->use_back())->getParent() == BB &&
!isa<PHINode>(Inst->use_back())) continue;
// If this is an alloca in the entry block, it's not a real register
// value.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
continue;
// Avoid iterator invalidation by copying users to a temporary vector.
SmallVector<Instruction*,16> Users;
for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (User->getParent() != BB || isa<PHINode>(User))
Users.push_back(User);
}
// Find all of the blocks that this value is live in.
std::set<BasicBlock*> LiveBBs;
LiveBBs.insert(Inst->getParent());
while (!Users.empty()) {
Instruction *U = Users.back();
Users.pop_back();
if (!isa<PHINode>(U)) {
MarkBlocksLiveIn(U->getParent(), LiveBBs);
} else {
// Uses for a PHI node occur in their predecessor block.
PHINode *PN = cast<PHINode>(U);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == Inst)
MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
}
}
// Now that we know all of the blocks that this thing is live in, see if
// it includes any of the unwind locations.
bool NeedsSpill = false;
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
if (UnwindBlock != BB && LiveBBs.count(UnwindBlock))
NeedsSpill = true;
}
// If we decided we need a spill, do it.
// FIXME: Spilling this way is overkill, as it forces all uses of
// the value to be reloaded from the stack slot, even those that aren't
// in the unwind blocks. We should be more selective.
if (NeedsSpill) {
++NumSpilled;
DemoteRegToStack(*Inst, true);
}
}
}
/// CreateLandingPadLoad - Load the exception handling values and insert them
/// into a structure.
static Instruction *CreateLandingPadLoad(Function &F, Value *ExnAddr,
Value *SelAddr,
BasicBlock::iterator InsertPt) {
Value *Exn = new LoadInst(ExnAddr, "exn", false,
InsertPt);
Type *Ty = Type::getInt8PtrTy(F.getContext());
Exn = CastInst::Create(Instruction::IntToPtr, Exn, Ty, "", InsertPt);
Value *Sel = new LoadInst(SelAddr, "sel", false, InsertPt);
Ty = StructType::get(Exn->getType(), Sel->getType(), NULL);
InsertValueInst *LPadVal = InsertValueInst::Create(llvm::UndefValue::get(Ty),
Exn, 0,
"lpad.val", InsertPt);
return InsertValueInst::Create(LPadVal, Sel, 1, "lpad.val", InsertPt);
}
/// ReplaceLandingPadVal - Replace the landingpad instruction's value with a
/// load from the stored values (via CreateLandingPadLoad). This looks through
/// PHI nodes, and removes them if they are dead.
static void ReplaceLandingPadVal(Function &F, Instruction *Inst, Value *ExnAddr,
Value *SelAddr) {
if (Inst->use_empty()) return;
while (!Inst->use_empty()) {
Instruction *I = cast<Instruction>(Inst->use_back());
if (PHINode *PN = dyn_cast<PHINode>(I)) {
ReplaceLandingPadVal(F, PN, ExnAddr, SelAddr);
if (PN->use_empty()) PN->eraseFromParent();
continue;
}
I->replaceUsesOfWith(Inst, CreateLandingPadLoad(F, ExnAddr, SelAddr, I));
}
}
bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
SmallVector<ReturnInst*,16> Returns;
SmallVector<UnwindInst*,16> Unwinds;
SmallVector<InvokeInst*,16> Invokes;
// Look through the terminators of the basic blocks to find invokes, returns
// and unwinds.
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
// Remember all return instructions in case we insert an invoke into this
// function.
Returns.push_back(RI);
} else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
Invokes.push_back(II);
} else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
Unwinds.push_back(UI);
}
}
NumInvokes += Invokes.size();
NumUnwinds += Unwinds.size();
// If we don't have any invokes, there's nothing to do.
if (Invokes.empty()) return false;
// Find the eh.selector.*, eh.exception and alloca calls.
//
// Remember any allocas() that aren't in the entry block, as the
// jmpbuf saved SP will need to be updated for them.
//
// We'll use the first eh.selector to determine the right personality
// function to use. For SJLJ, we always use the same personality for the
// whole function, not on a per-selector basis.
// FIXME: That's a bit ugly. Better way?
SmallVector<CallInst*,16> EH_Selectors;
SmallVector<CallInst*,16> EH_Exceptions;
SmallVector<Instruction*,16> JmpbufUpdatePoints;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
// Note: Skip the entry block since there's nothing there that interests
// us. eh.selector and eh.exception shouldn't ever be there, and we
// want to disregard any allocas that are there.
//
// FIXME: This is awkward. The new EH scheme won't need to skip the entry
// block.
if (BB == F.begin()) {
if (InvokeInst *II = dyn_cast<InvokeInst>(F.begin()->getTerminator())) {
// FIXME: This will be always non-NULL in the new EH.
if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
}
continue;
}
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (CI->getCalledFunction() == SelectorFn) {
if (!PersonalityFn) PersonalityFn = CI->getArgOperand(1);
EH_Selectors.push_back(CI);
} else if (CI->getCalledFunction() == ExceptionFn) {
EH_Exceptions.push_back(CI);
} else if (CI->getCalledFunction() == StackRestoreFn) {
JmpbufUpdatePoints.push_back(CI);
}
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
JmpbufUpdatePoints.push_back(AI);
} else if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
// FIXME: This will be always non-NULL in the new EH.
if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
}
}
}
// If we don't have any eh.selector calls, we can't determine the personality
// function. Without a personality function, we can't process exceptions.
if (!PersonalityFn) return false;
// We have invokes, so we need to add register/unregister calls to get this
// function onto the global unwind stack.
//
// First thing we need to do is scan the whole function for values that are
// live across unwind edges. Each value that is live across an unwind edge we
// spill into a stack location, guaranteeing that there is nothing live across
// the unwind edge. This process also splits all critical edges coming out of
// invoke's.
splitLiveRangesAcrossInvokes(Invokes);
SmallVector<LandingPadInst*, 16> LandingPads;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
// FIXME: This will be always non-NULL in the new EH.
if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
LandingPads.push_back(LPI);
}
BasicBlock *EntryBB = F.begin();
// Create an alloca for the incoming jump buffer ptr and the new jump buffer
// that needs to be restored on all exits from the function. This is an
// alloca because the value needs to be added to the global context list.
unsigned Align = 4; // FIXME: Should be a TLI check?
AllocaInst *FunctionContext =
new AllocaInst(FunctionContextTy, 0, Align,
"fcn_context", F.begin()->begin());
Value *Idxs[2];
Type *Int32Ty = Type::getInt32Ty(F.getContext());
Value *Zero = ConstantInt::get(Int32Ty, 0);
// We need to also keep around a reference to the call_site field
Idxs[0] = Zero;
Idxs[1] = ConstantInt::get(Int32Ty, 1);
CallSite = GetElementPtrInst::Create(FunctionContext, Idxs, "call_site",
EntryBB->getTerminator());
// The exception selector comes back in context->data[1]
Idxs[1] = ConstantInt::get(Int32Ty, 2);
Value *FCData = GetElementPtrInst::Create(FunctionContext, Idxs, "fc_data",
EntryBB->getTerminator());
Idxs[1] = ConstantInt::get(Int32Ty, 1);
Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs,
"exc_selector_gep",
EntryBB->getTerminator());
// The exception value comes back in context->data[0]
Idxs[1] = Zero;
Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs,
"exception_gep",
EntryBB->getTerminator());
// The result of the eh.selector call will be replaced with a a reference to
// the selector value returned in the function context. We leave the selector
// itself so the EH analysis later can use it.
for (int i = 0, e = EH_Selectors.size(); i < e; ++i) {
CallInst *I = EH_Selectors[i];
Value *SelectorVal = new LoadInst(SelectorAddr, "select_val", true, I);
I->replaceAllUsesWith(SelectorVal);
}
// eh.exception calls are replaced with references to the proper location in
// the context. Unlike eh.selector, the eh.exception calls are removed
// entirely.
for (int i = 0, e = EH_Exceptions.size(); i < e; ++i) {
CallInst *I = EH_Exceptions[i];
// Possible for there to be duplicates, so check to make sure the
// instruction hasn't already been removed.
if (!I->getParent()) continue;
Value *Val = new LoadInst(ExceptionAddr, "exception", true, I);
Type *Ty = Type::getInt8PtrTy(F.getContext());
Val = CastInst::Create(Instruction::IntToPtr, Val, Ty, "", I);
I->replaceAllUsesWith(Val);
I->eraseFromParent();
}
for (unsigned i = 0, e = LandingPads.size(); i != e; ++i)
ReplaceLandingPadVal(F, LandingPads[i], ExceptionAddr, SelectorAddr);
// The entry block changes to have the eh.sjlj.setjmp, with a conditional
// branch to a dispatch block for non-zero returns. If we return normally,
// we're not handling an exception and just register the function context and
// continue.
// Create the dispatch block. The dispatch block is basically a big switch
// statement that goes to all of the invoke landing pads.
BasicBlock *DispatchBlock =
BasicBlock::Create(F.getContext(), "eh.sjlj.setjmp.catch", &F);
// Insert a load of the callsite in the dispatch block, and a switch on its
// value. By default, we issue a trap statement.
BasicBlock *TrapBlock =
BasicBlock::Create(F.getContext(), "trapbb", &F);
CallInst::Create(Intrinsic::getDeclaration(F.getParent(), Intrinsic::trap),
"", TrapBlock);
new UnreachableInst(F.getContext(), TrapBlock);
Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true,
DispatchBlock);
SwitchInst *DispatchSwitch =
SwitchInst::Create(DispatchLoad, TrapBlock, Invokes.size(),
DispatchBlock);
// Split the entry block to insert the conditional branch for the setjmp.
BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
"eh.sjlj.setjmp.cont");
// Populate the Function Context
// 1. LSDA address
// 2. Personality function address
// 3. jmpbuf (save SP, FP and call eh.sjlj.setjmp)
// LSDA address
Idxs[0] = Zero;
Idxs[1] = ConstantInt::get(Int32Ty, 4);
Value *LSDAFieldPtr =
GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
EntryBB->getTerminator());
Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
EntryBB->getTerminator());
new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());
Idxs[1] = ConstantInt::get(Int32Ty, 3);
Value *PersonalityFieldPtr =
GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
EntryBB->getTerminator());
new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
EntryBB->getTerminator());
// Save the frame pointer.
Idxs[1] = ConstantInt::get(Int32Ty, 5);
Value *JBufPtr
= GetElementPtrInst::Create(FunctionContext, Idxs, "jbuf_gep",
EntryBB->getTerminator());
Idxs[1] = ConstantInt::get(Int32Ty, 0);
Value *FramePtr =
GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep",
EntryBB->getTerminator());
Value *Val = CallInst::Create(FrameAddrFn,
ConstantInt::get(Int32Ty, 0),
"fp",
EntryBB->getTerminator());
new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());
// Save the stack pointer.
Idxs[1] = ConstantInt::get(Int32Ty, 2);
Value *StackPtr =
GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep",
EntryBB->getTerminator());
Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());
// Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
Value *SetjmpArg =
CastInst::Create(Instruction::BitCast, JBufPtr,
Type::getInt8PtrTy(F.getContext()), "",
EntryBB->getTerminator());
Value *DispatchVal = CallInst::Create(BuiltinSetjmpFn, SetjmpArg,
"",
EntryBB->getTerminator());
// Add a call to dispatch_setup after the setjmp call. This is expanded to any
// target-specific setup that needs to be done.
CallInst::Create(DispatchSetupFn, DispatchVal, "", EntryBB->getTerminator());
// check the return value of the setjmp. non-zero goes to dispatcher.
Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
ICmpInst::ICMP_EQ, DispatchVal, Zero,
"notunwind");
// Nuke the uncond branch.
EntryBB->getTerminator()->eraseFromParent();
// Put in a new condbranch in its place.
BranchInst::Create(ContBlock, DispatchBlock, IsNormal, EntryBB);
// Register the function context and make sure it's known to not throw
CallInst *Register =
CallInst::Create(RegisterFn, FunctionContext, "",
ContBlock->getTerminator());
Register->setDoesNotThrow();
// At this point, we are all set up, update the invoke instructions to mark
// their call_site values, and fill in the dispatch switch accordingly.
for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
markInvokeCallSite(Invokes[i], i+1, CallSite, DispatchSwitch);
// Mark call instructions that aren't nounwind as no-action (call_site ==
// -1). Skip the entry block, as prior to then, no function context has been
// created for this function and any unexpected exceptions thrown will go
// directly to the caller's context, which is what we want anyway, so no need
// to do anything here.
for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) {
for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
if (CallInst *CI = dyn_cast<CallInst>(I)) {
// Ignore calls to the EH builtins (eh.selector, eh.exception)
Constant *Callee = CI->getCalledFunction();
if (Callee != SelectorFn && Callee != ExceptionFn
&& !CI->doesNotThrow())
insertCallSiteStore(CI, -1, CallSite);
} else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
insertCallSiteStore(RI, -1, CallSite);
}
}
// Replace all unwinds with a branch to the unwind handler.
// ??? Should this ever happen with sjlj exceptions?
for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
BranchInst::Create(TrapBlock, Unwinds[i]);
Unwinds[i]->eraseFromParent();
}
// Following any allocas not in the entry block, update the saved SP in the
// jmpbuf to the new value.
for (unsigned i = 0, e = JmpbufUpdatePoints.size(); i != e; ++i) {
Instruction *AI = JmpbufUpdatePoints[i];
Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp");
StackAddr->insertAfter(AI);
Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true);
StoreStackAddr->insertAfter(StackAddr);
}
// Finally, for any returns from this function, if this function contains an
// invoke, add a call to unregister the function context.
for (unsigned i = 0, e = Returns.size(); i != e; ++i)
CallInst::Create(UnregisterFn, FunctionContext, "", Returns[i]);
return true;
}
/// setupFunctionContext - Allocate the function context on the stack and fill
/// it with all of the data that we know at this point.
Value *SjLjEHPass::
@ -871,7 +298,7 @@ void SjLjEHPass::lowerAcrossUnwindEdges(Function &F,
}
// Find all of the blocks that this value is live in.
std::set<BasicBlock*> LiveBBs;
SmallPtrSet<BasicBlock*, 64> LiveBBs;
LiveBBs.insert(Inst->getParent());
while (!Users.empty()) {
Instruction *U = Users.back();
@ -895,6 +322,7 @@ void SjLjEHPass::lowerAcrossUnwindEdges(Function &F,
BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
NeedsSpill = true;
break;
}
}
@ -903,8 +331,8 @@ void SjLjEHPass::lowerAcrossUnwindEdges(Function &F,
// the value to be reloaded from the stack slot, even those that aren't
// in the unwind blocks. We should be more selective.
if (NeedsSpill) {
++NumSpilled;
DemoteRegToStack(*Inst, true);
++NumSpilled;
}
}
}
@ -950,6 +378,8 @@ bool SjLjEHPass::setupEntryBlockAndCallSites(Function &F) {
if (Invokes.empty()) return false;
NumInvokes += Invokes.size();
lowerIncomingArguments(F);
lowerAcrossUnwindEdges(F, Invokes);
@ -1039,10 +469,6 @@ bool SjLjEHPass::setupEntryBlockAndCallSites(Function &F) {
}
bool SjLjEHPass::runOnFunction(Function &F) {
bool Res = false;
if (!DisableOldSjLjEH)
Res = insertSjLjEHSupport(F);
else
Res = setupEntryBlockAndCallSites(F);
bool Res = setupEntryBlockAndCallSites(F);
return Res;
}