Misc style fixes. NFC.

This fixes a few cases of:

* Wrong variable name style.
* Lines longer than 80 columns.
* Repeated names in comments.
* clang-format of the above.

This make the next patch a lot easier to read.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221615 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Rafael Espindola
2014-11-10 18:11:10 +00:00
parent 2d268749a5
commit d342c4c748
11 changed files with 274 additions and 352 deletions

View File

@@ -85,42 +85,34 @@ namespace {
}
namespace {
/// ARMDisassembler - ARM disassembler for all ARM platforms.
/// ARM disassembler for all ARM platforms.
class ARMDisassembler : public MCDisassembler {
public:
/// Constructor - Initializes the disassembler.
///
ARMDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
MCDisassembler(STI, Ctx) {
}
~ARMDisassembler() {
}
~ARMDisassembler() {}
/// getInstruction - See MCDisassembler.
DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
const MemoryObject &region, uint64_t address,
raw_ostream &vStream,
raw_ostream &cStream) const override;
DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
const MemoryObject &Region, uint64_t Address,
raw_ostream &VStream,
raw_ostream &CStream) const override;
};
/// ThumbDisassembler - Thumb disassembler for all Thumb platforms.
/// Thumb disassembler for all Thumb platforms.
class ThumbDisassembler : public MCDisassembler {
public:
/// Constructor - Initializes the disassembler.
///
ThumbDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
MCDisassembler(STI, Ctx) {
}
~ThumbDisassembler() {
}
~ThumbDisassembler() {}
/// getInstruction - See MCDisassembler.
DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
const MemoryObject &region, uint64_t address,
raw_ostream &vStream,
raw_ostream &cStream) const override;
DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
const MemoryObject &Region, uint64_t Address,
raw_ostream &VStream,
raw_ostream &CStream) const override;
private:
mutable ITStatus ITBlock;
@@ -416,102 +408,100 @@ static MCDisassembler *createThumbDisassembler(const Target &T,
DecodeStatus ARMDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
const MemoryObject &Region,
uint64_t Address,
raw_ostream &os,
raw_ostream &cs) const {
CommentStream = &cs;
uint64_t Address, raw_ostream &OS,
raw_ostream &CS) const {
CommentStream = &CS;
uint8_t bytes[4];
uint8_t Bytes[4];
assert(!(STI.getFeatureBits() & ARM::ModeThumb) &&
"Asked to disassemble an ARM instruction but Subtarget is in Thumb mode!");
"Asked to disassemble an ARM instruction but Subtarget is in Thumb "
"mode!");
// We want to read exactly 4 bytes of data.
if (Region.readBytes(Address, 4, bytes) == -1) {
if (Region.readBytes(Address, 4, Bytes) == -1) {
Size = 0;
return MCDisassembler::Fail;
}
// Encoded as a small-endian 32-bit word in the stream.
uint32_t insn = (bytes[3] << 24) |
(bytes[2] << 16) |
(bytes[1] << 8) |
(bytes[0] << 0);
uint32_t Insn =
(Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | (Bytes[0] << 0);
// Calling the auto-generated decoder function.
DecodeStatus result = decodeInstruction(DecoderTableARM32, MI, insn,
Address, this, STI);
if (result != MCDisassembler::Fail) {
DecodeStatus Result =
decodeInstruction(DecoderTableARM32, MI, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return result;
return Result;
}
// VFP and NEON instructions, similarly, are shared between ARM
// and Thumb modes.
MI.clear();
result = decodeInstruction(DecoderTableVFP32, MI, insn, Address, this, STI);
if (result != MCDisassembler::Fail) {
Result = decodeInstruction(DecoderTableVFP32, MI, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return result;
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTableVFPV832, MI, insn, Address, this, STI);
if (result != MCDisassembler::Fail) {
Result = decodeInstruction(DecoderTableVFPV832, MI, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return result;
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTableNEONData32, MI, insn, Address,
this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTableNEONData32, MI, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, this))
return MCDisassembler::Fail;
return result;
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTableNEONLoadStore32, MI, insn, Address,
Result = decodeInstruction(DecoderTableNEONLoadStore32, MI, Insn, Address,
this, STI);
if (result != MCDisassembler::Fail) {
if (Result != MCDisassembler::Fail) {
Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, this))
return MCDisassembler::Fail;
return result;
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTableNEONDup32, MI, insn, Address,
this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTableNEONDup32, MI, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, this))
return MCDisassembler::Fail;
return result;
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTablev8NEON32, MI, insn, Address,
this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTablev8NEON32, MI, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return result;
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTablev8Crypto32, MI, insn, Address,
this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTablev8Crypto32, MI, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return result;
return Result;
}
MI.clear();
@@ -685,53 +675,53 @@ void ThumbDisassembler::UpdateThumbVFPPredicate(MCInst &MI) const {
DecodeStatus ThumbDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
const MemoryObject &Region,
uint64_t Address,
raw_ostream &os,
raw_ostream &cs) const {
CommentStream = &cs;
raw_ostream &OS,
raw_ostream &CS) const {
CommentStream = &CS;
uint8_t bytes[4];
uint8_t Bytes[4];
assert((STI.getFeatureBits() & ARM::ModeThumb) &&
"Asked to disassemble in Thumb mode but Subtarget is in ARM mode!");
// We want to read exactly 2 bytes of data.
if (Region.readBytes(Address, 2, bytes) == -1) {
if (Region.readBytes(Address, 2, Bytes) == -1) {
Size = 0;
return MCDisassembler::Fail;
}
uint16_t insn16 = (bytes[1] << 8) | bytes[0];
DecodeStatus result = decodeInstruction(DecoderTableThumb16, MI, insn16,
Address, this, STI);
if (result != MCDisassembler::Fail) {
uint16_t Insn16 = (Bytes[1] << 8) | Bytes[0];
DecodeStatus Result =
decodeInstruction(DecoderTableThumb16, MI, Insn16, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 2;
Check(result, AddThumbPredicate(MI));
return result;
Check(Result, AddThumbPredicate(MI));
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTableThumbSBit16, MI, insn16,
Address, this, STI);
if (result) {
Result = decodeInstruction(DecoderTableThumbSBit16, MI, Insn16, Address, this,
STI);
if (Result) {
Size = 2;
bool InITBlock = ITBlock.instrInITBlock();
Check(result, AddThumbPredicate(MI));
Check(Result, AddThumbPredicate(MI));
AddThumb1SBit(MI, InITBlock);
return result;
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTableThumb216, MI, insn16,
Address, this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTableThumb216, MI, Insn16, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 2;
// Nested IT blocks are UNPREDICTABLE. Must be checked before we add
// the Thumb predicate.
if (MI.getOpcode() == ARM::t2IT && ITBlock.instrInITBlock())
result = MCDisassembler::SoftFail;
Result = MCDisassembler::SoftFail;
Check(result, AddThumbPredicate(MI));
Check(Result, AddThumbPredicate(MI));
// If we find an IT instruction, we need to parse its condition
// code and mask operands so that we can apply them correctly
@@ -743,115 +733,115 @@ DecodeStatus ThumbDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
ITBlock.setITState(Firstcond, Mask);
}
return result;
return Result;
}
// We want to read exactly 4 bytes of data.
if (Region.readBytes(Address, 4, bytes) == -1) {
if (Region.readBytes(Address, 4, Bytes) == -1) {
Size = 0;
return MCDisassembler::Fail;
}
uint32_t insn32 = (bytes[3] << 8) |
(bytes[2] << 0) |
(bytes[1] << 24) |
(bytes[0] << 16);
uint32_t Insn32 =
(Bytes[3] << 8) | (Bytes[2] << 0) | (Bytes[1] << 24) | (Bytes[0] << 16);
MI.clear();
result = decodeInstruction(DecoderTableThumb32, MI, insn32, Address,
this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTableThumb32, MI, Insn32, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
bool InITBlock = ITBlock.instrInITBlock();
Check(result, AddThumbPredicate(MI));
Check(Result, AddThumbPredicate(MI));
AddThumb1SBit(MI, InITBlock);
return result;
return Result;
}
MI.clear();
result = decodeInstruction(DecoderTableThumb232, MI, insn32, Address,
this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTableThumb232, MI, Insn32, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
Check(result, AddThumbPredicate(MI));
return result;
Check(Result, AddThumbPredicate(MI));
return Result;
}
if (fieldFromInstruction(insn32, 28, 4) == 0xE) {
if (fieldFromInstruction(Insn32, 28, 4) == 0xE) {
MI.clear();
result = decodeInstruction(DecoderTableVFP32, MI, insn32, Address, this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTableVFP32, MI, Insn32, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
UpdateThumbVFPPredicate(MI);
return result;
return Result;
}
}
MI.clear();
result = decodeInstruction(DecoderTableVFPV832, MI, insn32, Address, this, STI);
if (result != MCDisassembler::Fail) {
Result =
decodeInstruction(DecoderTableVFPV832, MI, Insn32, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return result;
return Result;
}
if (fieldFromInstruction(insn32, 28, 4) == 0xE) {
if (fieldFromInstruction(Insn32, 28, 4) == 0xE) {
MI.clear();
result = decodeInstruction(DecoderTableNEONDup32, MI, insn32, Address,
this, STI);
if (result != MCDisassembler::Fail) {
Result = decodeInstruction(DecoderTableNEONDup32, MI, Insn32, Address, this,
STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
Check(result, AddThumbPredicate(MI));
return result;
Check(Result, AddThumbPredicate(MI));
return Result;
}
}
if (fieldFromInstruction(insn32, 24, 8) == 0xF9) {
if (fieldFromInstruction(Insn32, 24, 8) == 0xF9) {
MI.clear();
uint32_t NEONLdStInsn = insn32;
uint32_t NEONLdStInsn = Insn32;
NEONLdStInsn &= 0xF0FFFFFF;
NEONLdStInsn |= 0x04000000;
result = decodeInstruction(DecoderTableNEONLoadStore32, MI, NEONLdStInsn,
Result = decodeInstruction(DecoderTableNEONLoadStore32, MI, NEONLdStInsn,
Address, this, STI);
if (result != MCDisassembler::Fail) {
if (Result != MCDisassembler::Fail) {
Size = 4;
Check(result, AddThumbPredicate(MI));
return result;
Check(Result, AddThumbPredicate(MI));
return Result;
}
}
if (fieldFromInstruction(insn32, 24, 4) == 0xF) {
if (fieldFromInstruction(Insn32, 24, 4) == 0xF) {
MI.clear();
uint32_t NEONDataInsn = insn32;
uint32_t NEONDataInsn = Insn32;
NEONDataInsn &= 0xF0FFFFFF; // Clear bits 27-24
NEONDataInsn |= (NEONDataInsn & 0x10000000) >> 4; // Move bit 28 to bit 24
NEONDataInsn |= 0x12000000; // Set bits 28 and 25
result = decodeInstruction(DecoderTableNEONData32, MI, NEONDataInsn,
Result = decodeInstruction(DecoderTableNEONData32, MI, NEONDataInsn,
Address, this, STI);
if (result != MCDisassembler::Fail) {
if (Result != MCDisassembler::Fail) {
Size = 4;
Check(result, AddThumbPredicate(MI));
return result;
Check(Result, AddThumbPredicate(MI));
return Result;
}
MI.clear();
uint32_t NEONCryptoInsn = insn32;
uint32_t NEONCryptoInsn = Insn32;
NEONCryptoInsn &= 0xF0FFFFFF; // Clear bits 27-24
NEONCryptoInsn |= (NEONCryptoInsn & 0x10000000) >> 4; // Move bit 28 to bit 24
NEONCryptoInsn |= 0x12000000; // Set bits 28 and 25
result = decodeInstruction(DecoderTablev8Crypto32, MI, NEONCryptoInsn,
Result = decodeInstruction(DecoderTablev8Crypto32, MI, NEONCryptoInsn,
Address, this, STI);
if (result != MCDisassembler::Fail) {
if (Result != MCDisassembler::Fail) {
Size = 4;
return result;
return Result;
}
MI.clear();
uint32_t NEONv8Insn = insn32;
uint32_t NEONv8Insn = Insn32;
NEONv8Insn &= 0xF3FFFFFF; // Clear bits 27-26
result = decodeInstruction(DecoderTablev8NEON32, MI, NEONv8Insn, Address,
Result = decodeInstruction(DecoderTablev8NEON32, MI, NEONv8Insn, Address,
this, STI);
if (result != MCDisassembler::Fail) {
if (Result != MCDisassembler::Fail) {
Size = 4;
return result;
return Result;
}
}