Disable some DAG combiner optimizations that may be

wrong for volatile loads and stores.  In fact this
is almost all of them!  There are three types of
problems: (1) it is wrong to change the width of
a volatile memory access.  These may be used to
do memory mapped i/o, in which case a load can have
an effect even if the result is not used.  Consider
loading an i32 but only using the lower 8 bits.  It
is wrong to change this into a load of an i8, because
you are no longer tickling the other three bytes.  It
is also unwise to make a load/store wider.  For
example, changing an i16 load into an i32 load is
wrong no matter how aligned things are, since the
fact of loading an additional 2 bytes can have
i/o side-effects.  (2) it is wrong to change the
number of volatile load/stores: they may be counted
by the hardware.  (3) it is wrong to change a volatile
load/store that requires one memory access into one
that requires several.  For example on x86-32, you
can store a double in one processor operation, but to
store an i64 requires two (two i32 stores).  In a
multi-threaded program you may want to bitcast an i64
to a double and store as a double because that will
occur atomically, and be indivisible to other threads.
So it would be wrong to convert the store-of-double
into a store of an i64, because this will become two
i32 stores - no longer atomic.  My policy here is
to say that the number of processor operations for
an illegal operation is undefined.  So it is alright
to change a store of an i64 (requires at least two
stores; but could be validly lowered to memcpy for
example) into a store of double (one processor op).
In short, if the new store is legal and has the same
size then I say that the transform is ok.  It would
also be possible to say that transforms are always
ok if before they were illegal, whether after they
are illegal or not, but that's more awkward to do
and I doubt it buys us anything much.
However this exposed an interesting thing - on x86-32
a store of i64 is considered legal!  That is because
operations are marked legal by default, regardless of
whether the type is legal or not.  In some ways this
is clever: before type legalization this means that
operations on illegal types are considered legal;
after type legalization there are no illegal types
so now operations are only legal if they really are.
But I consider this to be too cunning for mere mortals.
Better to do things explicitly by testing AfterLegalize.
So I have changed things so that operations with illegal
types are considered illegal - indeed they can never
map to a machine operation.  However this means that
the DAG combiner is more conservative because before
it was "accidentally" performing transforms where the
type was illegal because the operation was nonetheless
marked legal.  So in a few such places I added a check
on AfterLegalize, which I suppose was actually just
forgotten before.  This causes the DAG combiner to do
slightly more than it used to, which resulted in the X86
backend blowing up because it got a slightly surprising
node it wasn't expecting, so I tweaked it.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52254 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Duncan Sands 2008-06-13 19:07:40 +00:00
parent 03e585737b
commit d4b9c17fb7
6 changed files with 145 additions and 67 deletions

View File

@ -295,7 +295,7 @@ public:
/// isOperationLegal - Return true if the specified operation is legal on this
/// target.
bool isOperationLegal(unsigned Op, MVT VT) const {
return VT.isSimple() &&
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Custom);
}
@ -335,7 +335,7 @@ public:
/// isTruncStoreLegal - Return true if the specified store with truncation is
/// legal on this target.
bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
return MemVT.isSimple() &&
return isTypeLegal(ValVT) && MemVT.isSimple() &&
(getTruncStoreAction(ValVT, MemVT) == Legal ||
getTruncStoreAction(ValVT, MemVT) == Custom);
}
@ -398,7 +398,7 @@ public:
/// isConvertLegal - Return true if the specified conversion is legal
/// on this target.
bool isConvertLegal(MVT FromVT, MVT ToVT) const {
return FromVT.isSimple() && ToVT.isSimple() &&
return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
(getConvertAction(FromVT, ToVT) == Legal ||
getConvertAction(FromVT, ToVT) == Custom);
}

View File

@ -1535,7 +1535,8 @@ SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
AddToWorkList(Lo.Val);
SDOperand LoOpt = combine(Lo.Val);
if (LoOpt.Val && LoOpt.Val != Lo.Val &&
TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
(!AfterLegalize ||
TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
return CombineTo(N, LoOpt, LoOpt);
}
@ -1545,7 +1546,8 @@ SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
AddToWorkList(Hi.Val);
SDOperand HiOpt = combine(Hi.Val);
if (HiOpt.Val && HiOpt != Hi &&
TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
(!AfterLegalize ||
TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
return CombineTo(N, HiOpt, HiOpt);
}
return SDOperand();
@ -1736,7 +1738,8 @@ SDOperand DAGCombiner::visitAND(SDNode *N) {
unsigned BitWidth = N1.getValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - EVT.getSizeInBits())) &&
(!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
((!AfterLegalize && !LN0->isVolatile()) ||
TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
@ -1757,7 +1760,8 @@ SDOperand DAGCombiner::visitAND(SDNode *N) {
unsigned BitWidth = N1.getValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - EVT.getSizeInBits())) &&
(!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
((!AfterLegalize && !LN0->isVolatile()) ||
TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
@ -1774,18 +1778,19 @@ SDOperand DAGCombiner::visitAND(SDNode *N) {
if (N1C && N0.getOpcode() == ISD::LOAD) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (LN0->getExtensionType() != ISD::SEXTLOAD &&
LN0->isUnindexed() && N0.hasOneUse()) {
LN0->isUnindexed() && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!LN0->isVolatile()) {
MVT EVT = MVT::Other;
uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue()))
EVT = MVT::getIntegerVT(ActiveBits);
MVT LoadedVT = LN0->getMemoryVT();
if (EVT != MVT::Other && LoadedVT.bitsGT(EVT) &&
// Loading a non-byte sized integer is only valid if the extra bits
// in memory that complete the byte are zero, which is not known here.
// TODO: remove isSimple check when apint codegen support lands.
EVT.isSimple() && EVT.isByteSized() &&
// Do not generate loads of extended integer types since these can be
// expensive (and would be wrong if the type is not byte sized).
if (EVT != MVT::Other && LoadedVT.bitsGT(EVT) && EVT.isSimple() &&
EVT.isByteSized() && // Exclude MVT::i1, which is simple.
(!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
MVT PtrType = N0.getOperand(1).getValueType();
// For big endian targets, we need to add an offset to the pointer to
@ -1957,7 +1962,7 @@ static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
// idioms for rotate, and if the target supports rotation instructions, generate
// a rot[lr].
SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
// Must be a legal type. Expanded an promoted things won't work with rotates.
// Must be a legal type. Expanded 'n promoted things won't work with rotates.
MVT VT = LHS.getValueType();
if (!TLI.isTypeLegal(VT)) return 0;
@ -2385,9 +2390,8 @@ SDOperand DAGCombiner::visitSRA(SDNode *N) {
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
unsigned LowBits = VT.getSizeInBits() - (unsigned)N1C->getValue();
MVT EVT = MVT::getIntegerVT(LowBits);
// TODO: turn on when apint codegen support lands.
// if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
if (EVT.isSimple() && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
if (EVT.isSimple() && // TODO: remove when apint codegen support lands.
(!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
DAG.getValueType(EVT));
}
@ -2423,7 +2427,6 @@ SDOperand DAGCombiner::visitSRA(SDNode *N) {
// on that type, and the the truncate to that type is both legal and free,
// perform the transform.
if (ShiftAmt &&
TLI.isTypeLegal(TruncVT) &&
TLI.isOperationLegal(ISD::SIGN_EXTEND, TruncVT) &&
TLI.isOperationLegal(ISD::TRUNCATE, VT) &&
TLI.isTruncateFree(VT, TruncVT)) {
@ -2821,7 +2824,8 @@ SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
// fold (sext (load x)) -> (sext (truncate (sextload x)))
if (ISD::isNON_EXTLoad(N0.Val) &&
(!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
@ -2862,7 +2866,8 @@ SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
MVT EVT = LN0->getMemoryVT();
if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
if ((!AfterLegalize && !LN0->isVolatile()) ||
TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
@ -2944,7 +2949,8 @@ SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
// fold (zext (load x)) -> (zext (truncate (zextload x)))
if (ISD::isNON_EXTLoad(N0.Val) &&
(!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
@ -2985,6 +2991,8 @@ SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
MVT EVT = LN0->getMemoryVT();
if ((!AfterLegalize && !LN0->isVolatile()) ||
TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT)) {
SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
@ -2995,6 +3003,7 @@ SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
ExtLoad.getValue(1));
return SDOperand(N, 0); // Return N so it doesn't get rechecked!
}
}
// zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
if (N0.getOpcode() == ISD::SETCC) {
@ -3061,7 +3070,8 @@ SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
// fold (aext (load x)) -> (aext (truncate (extload x)))
if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
(!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
@ -3177,11 +3187,12 @@ SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
}
}
if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
// Do not allow folding to a non-byte-sized integer here. These only
// load correctly if the extra bits in memory that complete the byte
// are zero, which is not known here.
VT.isByteSized()) {
// Do not generate loads of extended integer types since these can be
// expensive (and would be wrong if the type is not byte sized).
if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() && VT.isSimple() &&
VT.isByteSized() && // Exclude MVT::i1, which is simple.
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile()) {
assert(N0.getValueType().getSizeInBits() > EVTBits &&
"Cannot truncate to larger type!");
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
@ -3281,7 +3292,8 @@ SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
if (ISD::isEXTLoad(N0.Val) &&
ISD::isUNINDEXEDLoad(N0.Val) &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
(!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
@ -3296,7 +3308,8 @@ SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
N0.hasOneUse() &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
(!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
@ -3372,16 +3385,20 @@ SDOperand DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) {
const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
if (ISD::isNON_EXTLoad(LD2) &&
LD2->hasOneUse() &&
// If both are volatile this would reduce the number of volatile loads.
// If one is volatile it might be ok, but play conservative and bail out.
!cast<LoadSDNode>(LD1)->isVolatile() &&
!cast<LoadSDNode>(LD2)->isVolatile() &&
TLI.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1, MFI)) {
LoadSDNode *LD = cast<LoadSDNode>(LD1);
unsigned Align = LD->getAlignment();
unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
getABITypeAlignment(VT.getTypeForMVT());
if ((!AfterLegalize || TLI.isTypeLegal(VT)) &&
TLI.isOperationLegal(ISD::LOAD, VT) && NewAlign <= Align)
if (NewAlign <= Align &&
(!AfterLegalize || TLI.isOperationLegal(ISD::LOAD, VT)))
return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(),
LD->getSrcValue(), LD->getSrcValueOffset(),
LD->isVolatile(), Align);
false, Align);
}
return SDOperand();
}
@ -3426,7 +3443,9 @@ SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
// fold (conv (load x)) -> (load (conv*)x)
// If the resultant load doesn't need a higher alignment than the original!
if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
TLI.isOperationLegal(ISD::LOAD, VT)) {
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile() &&
(!AfterLegalize || TLI.isOperationLegal(ISD::LOAD, VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
unsigned Align = TLI.getTargetMachine().getTargetData()->
getABITypeAlignment(VT.getTypeForMVT());
@ -3946,7 +3965,8 @@ SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
(!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
((!AfterLegalize && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
@ -3961,7 +3981,6 @@ SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
return SDOperand(N, 0); // Return N so it doesn't get rechecked!
}
return SDOperand();
}
@ -4509,13 +4528,19 @@ SDOperand DAGCombiner::visitSTORE(SDNode *N) {
MVT SVT = Value.getOperand(0).getValueType();
unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
getABITypeAlignment(SVT.getTypeForMVT());
if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
if (Align <= OrigAlign &&
((!AfterLegalize && !ST->isVolatile()) ||
TLI.isOperationLegal(ISD::STORE, SVT)))
return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->isVolatile(), Align);
}
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
// NOTE: If the original store is volatile, this transform must not increase
// the number of stores. For example, on x86-32 an f64 can be stored in one
// processor operation but an i64 (which is not legal) requires two. So the
// transform should not be done in this case.
if (Value.getOpcode() != ISD::TargetConstantFP) {
SDOperand Tmp;
switch (CFP->getValueType(0).getSimpleVT()) {
@ -4525,7 +4550,8 @@ SDOperand DAGCombiner::visitSTORE(SDNode *N) {
case MVT::ppcf128:
break;
case MVT::f32:
if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
if ((!AfterLegalize && !ST->isVolatile()) ||
TLI.isOperationLegal(ISD::STORE, MVT::i32)) {
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
convertToAPInt().getZExtValue(), MVT::i32);
return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
@ -4534,13 +4560,15 @@ SDOperand DAGCombiner::visitSTORE(SDNode *N) {
}
break;
case MVT::f64:
if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
if ((!AfterLegalize && !ST->isVolatile()) ||
TLI.isOperationLegal(ISD::STORE, MVT::i64)) {
Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
getZExtValue(), MVT::i64);
return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->isVolatile(),
ST->getAlignment());
} else if (TLI.isTypeLegal(MVT::i32)) {
} else if (!ST->isVolatile() &&
TLI.isOperationLegal(ISD::STORE, MVT::i32)) {
// Many FP stores are not made apparent until after legalize, e.g. for
// argument passing. Since this is so common, custom legalize the
// 64-bit integer store into two 32-bit stores.
@ -4642,8 +4670,7 @@ SDOperand DAGCombiner::visitSTORE(SDNode *N) {
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a
// truncating store. We can do this even if this is already a truncstore.
if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
&& TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
Value.Val->hasOneUse() && ST->isUnindexed() &&
&& Value.Val->hasOneUse() && ST->isUnindexed() &&
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
ST->getMemoryVT())) {
return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
@ -4731,7 +4758,8 @@ SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
// original load.
unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
getABITypeAlignment(LVT.getTypeForMVT());
if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
if (NewAlign > Align ||
(AfterLegalize && !TLI.isOperationLegal(ISD::LOAD, LVT)))
return SDOperand();
Align = NewAlign;
}
@ -5136,6 +5164,9 @@ bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
// This triggers in things like "select bool X, 10.0, 123.0" after the FP
// constants have been dropped into the constant pool.
if (LHS.getOpcode() == ISD::LOAD &&
// Do not let this transformation reduce the number of volatile loads.
!cast<LoadSDNode>(LHS)->isVolatile() &&
!cast<LoadSDNode>(RHS)->isVolatile() &&
// Token chains must be identical.
LHS.getOperand(0) == RHS.getOperand(0)) {
LoadSDNode *LLD = cast<LoadSDNode>(LHS);

View File

@ -2384,7 +2384,7 @@ SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) {
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
break;
} else if (getTypeAction(MVT::i32) == Legal) {
} else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
// Otherwise, if the target supports 32-bit registers, use 2 32-bit
// stores. If the target supports neither 32- nor 64-bits, this
// xform is certainly not worth it.

View File

@ -2384,6 +2384,8 @@ def : Pat<(v4i32 (X86vzmovl (loadv4i32 addr:$src))),
(MOVZDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
(MOVZDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
(MOVZDI2PDIrm addr:$src)>;
def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",

View File

@ -0,0 +1,23 @@
; RUN: llvm-as < %s | llc -march=x86 | not grep movsd
; RUN: llvm-as < %s | llc -march=x86 | grep movw
; RUN: llvm-as < %s | llc -march=x86 | grep addw
; These transforms are turned off for volatile loads and stores.
; Check that they weren't turned off for all loads and stores!
@atomic = global double 0.000000e+00 ; <double*> [#uses=1]
@atomic2 = global double 0.000000e+00 ; <double*> [#uses=1]
@ioport = global i32 0 ; <i32*> [#uses=1]
@ioport2 = global i32 0 ; <i32*> [#uses=1]
define i16 @f(i64 %x) {
%b = bitcast i64 %x to double ; <double> [#uses=1]
store double %b, double* @atomic
store double 0.000000e+00, double* @atomic2
%l = load i32* @ioport ; <i32> [#uses=1]
%t = trunc i32 %l to i16 ; <i16> [#uses=1]
%l2 = load i32* @ioport2 ; <i32> [#uses=1]
%tmp = lshr i32 %l2, 16 ; <i32> [#uses=1]
%t2 = trunc i32 %tmp to i16 ; <i16> [#uses=1]
%f = add i16 %t, %t2 ; <i16> [#uses=1]
ret i16 %f
}

View File

@ -0,0 +1,22 @@
; RUN: llvm-as < %s | llc -march=x86 | grep movsd | count 5
; RUN: llvm-as < %s | llc -march=x86 | grep movl | count 2
@atomic = global double 0.000000e+00 ; <double*> [#uses=1]
@atomic2 = global double 0.000000e+00 ; <double*> [#uses=1]
@anything = global i64 0 ; <i64*> [#uses=1]
@ioport = global i32 0 ; <i32*> [#uses=2]
define i16 @f(i64 %x, double %y) {
%b = bitcast i64 %x to double ; <double> [#uses=1]
volatile store double %b, double* @atomic ; one processor operation only
volatile store double 0.000000e+00, double* @atomic2 ; one processor operation only
%b2 = bitcast double %y to i64 ; <i64> [#uses=1]
volatile store i64 %b2, i64* @anything ; may transform to store of double
%l = volatile load i32* @ioport ; must not narrow
%t = trunc i32 %l to i16 ; <i16> [#uses=1]
%l2 = volatile load i32* @ioport ; must not narrow
%tmp = lshr i32 %l2, 16 ; <i32> [#uses=1]
%t2 = trunc i32 %tmp to i16 ; <i16> [#uses=1]
%f = add i16 %t, %t2 ; <i16> [#uses=1]
ret i16 %f
}