major surgery on tblgen: generalize TreePatternNode

to maintain a list of types (one for each result of
the node) instead of a single type.  There are liberal
hacks added to emulate the old behavior in various
situations, but they can start disolving now.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98999 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2010-03-19 21:37:09 +00:00
parent 0157f50437
commit d734919465
5 changed files with 305 additions and 164 deletions

View File

@ -566,6 +566,7 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
const SDNodeInfo &NodeInfo,
TreePattern &TP) const {
unsigned NumResults = NodeInfo.getNumResults();
unsigned ResNo = 0; // TODO: Set to the result # we're working with.
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
@ -582,24 +583,25 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
default: assert(0 && "Unknown constraint type!");
case SDTCisVT:
// Operand must be a particular type.
return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
case SDTCisPtrTy:
// Operand must be same as target pointer type.
return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
case SDTCisInt:
// Require it to be one of the legal integer VTs.
return NodeToApply->getExtType().EnforceInteger(TP);
return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
case SDTCisFP:
// Require it to be one of the legal fp VTs.
return NodeToApply->getExtType().EnforceFloatingPoint(TP);
return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
case SDTCisVec:
// Require it to be one of the legal vector VTs.
return NodeToApply->getExtType().EnforceVector(TP);
return NodeToApply->getExtType(ResNo).EnforceVector(TP);
case SDTCisSameAs: {
unsigned OResNo = 0; // FIXME: getOperandNum should return pair.
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
return NodeToApply->UpdateNodeType(OtherNode->getExtType(), TP) |
OtherNode->UpdateNodeType(NodeToApply->getExtType(), TP);
return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
}
case SDTCisVTSmallerThanOp: {
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
@ -614,40 +616,44 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
if (!isInteger(VT))
TP.error(N->getOperator()->getName() + " VT operand must be integer!");
unsigned OResNo = 0; // FIXME: getOperandNum should return pair.
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
// It must be integer.
bool MadeChange = OtherNode->getExtType().EnforceInteger(TP);
bool MadeChange = OtherNode->getExtType(OResNo).EnforceInteger(TP);
// This doesn't try to enforce any information on the OtherNode, it just
// validates it when information is determined.
if (OtherNode->hasTypeSet() && OtherNode->getType() <= VT)
OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
if (OtherNode->hasTypeSet(OResNo) && OtherNode->getType(OResNo) <= VT)
OtherNode->UpdateNodeType(OResNo, MVT::Other, TP); // Throw an error.
return MadeChange;
}
case SDTCisOpSmallerThanOp: {
unsigned BResNo = 0; // FIXME: getOperandNum should return pair.
TreePatternNode *BigOperand =
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
return NodeToApply->getExtType().
EnforceSmallerThan(BigOperand->getExtType(), TP);
return NodeToApply->getExtType(ResNo).
EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
}
case SDTCisEltOfVec: {
unsigned VResNo = 0; // FIXME: getOperandNum should return pair.
TreePatternNode *VecOperand =
getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NumResults);
if (VecOperand->hasTypeSet()) {
if (!isVector(VecOperand->getType()))
if (VecOperand->hasTypeSet(VResNo)) {
if (!isVector(VecOperand->getType(VResNo)))
TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
EVT IVT = VecOperand->getType();
EVT IVT = VecOperand->getType(VResNo);
IVT = IVT.getVectorElementType();
return NodeToApply->UpdateNodeType(IVT.getSimpleVT().SimpleTy, TP);
return NodeToApply->UpdateNodeType(ResNo, IVT.getSimpleVT().SimpleTy, TP);
}
if (NodeToApply->hasTypeSet() && VecOperand->getExtType().hasVectorTypes()){
if (NodeToApply->hasTypeSet(ResNo) &&
VecOperand->getExtType(VResNo).hasVectorTypes()){
// Filter vector types out of VecOperand that don't have the right element
// type.
return VecOperand->getExtType().
EnforceVectorEltTypeIs(NodeToApply->getType(), TP);
return VecOperand->getExtType(VResNo).
EnforceVectorEltTypeIs(NodeToApply->getType(ResNo), TP);
}
return false;
}
@ -740,17 +746,73 @@ TreePatternNode::~TreePatternNode() {
#endif
}
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
if (Operator->getName() == "set" ||
Operator->getName() == "implicit" ||
Operator->getName() == "parallel")
return 0; // All return nothing.
void TreePatternNode::print(raw_ostream &OS) const {
if (isLeaf()) {
OS << *getLeafValue();
} else {
OS << '(' << getOperator()->getName();
if (Operator->isSubClassOf("Intrinsic")) {
unsigned NumRes = CDP.getIntrinsic(Operator).IS.RetVTs.size();
if (NumRes == 1 && CDP.getIntrinsic(Operator).IS.RetVTs[0] == MVT::isVoid)
return 0;
return NumRes;
}
if (!isTypeCompletelyUnknown())
OS << ':' << getExtType().getName();
if (Operator->isSubClassOf("SDNode"))
return CDP.getSDNodeInfo(Operator).getNumResults();
if (Operator->isSubClassOf("PatFrag")) {
// If we've already parsed this pattern fragment, get it. Otherwise, handle
// the forward reference case where one pattern fragment references another
// before it is processed.
if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
return PFRec->getOnlyTree()->getNumTypes();
// Get the result tree.
DagInit *Tree = Operator->getValueAsDag("Fragment");
Record *Op = 0;
if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
assert(Op && "Invalid Fragment");
return GetNumNodeResults(Op, CDP);
}
if (Operator->isSubClassOf("Instruction")) {
CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
// FIXME: Handle implicit defs right.
if (InstInfo.NumDefs != 0)
return 1; // FIXME: Handle inst results right!
if (!InstInfo.ImplicitDefs.empty()) {
// Add on one implicit def if it has a resolvable type.
Record *FirstImplicitDef = InstInfo.ImplicitDefs[0];
assert(FirstImplicitDef->isSubClassOf("Register"));
const std::vector<MVT::SimpleValueType> &RegVTs =
CDP.getTargetInfo().getRegisterVTs(FirstImplicitDef);
if (RegVTs.size() == 1)
return 1;
}
return 0;
}
if (Operator->isSubClassOf("SDNodeXForm"))
return 1; // FIXME: Generalize SDNodeXForm
Operator->dump();
errs() << "Unhandled node in GetNumNodeResults\n";
exit(1);
}
void TreePatternNode::print(raw_ostream &OS) const {
if (isLeaf())
OS << *getLeafValue();
else
OS << '(' << getOperator()->getName();
for (unsigned i = 0, e = Types.size(); i != e; ++i)
OS << ':' << getExtType(i).getName();
if (!isLeaf()) {
if (getNumChildren() != 0) {
@ -786,7 +848,7 @@ void TreePatternNode::dump() const {
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
const MultipleUseVarSet &DepVars) const {
if (N == this) return true;
if (N->isLeaf() != isLeaf() || getExtType() != N->getExtType() ||
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
getPredicateFns() != N->getPredicateFns() ||
getTransformFn() != N->getTransformFn())
return false;
@ -815,16 +877,16 @@ bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
TreePatternNode *TreePatternNode::clone() const {
TreePatternNode *New;
if (isLeaf()) {
New = new TreePatternNode(getLeafValue());
New = new TreePatternNode(getLeafValue(), getNumTypes());
} else {
std::vector<TreePatternNode*> CChildren;
CChildren.reserve(Children.size());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
CChildren.push_back(getChild(i)->clone());
New = new TreePatternNode(getOperator(), CChildren);
New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
}
New->setName(getName());
New->setType(getExtType());
New->Types = Types;
New->setPredicateFns(getPredicateFns());
New->setTransformFn(getTransformFn());
return New;
@ -832,7 +894,8 @@ TreePatternNode *TreePatternNode::clone() const {
/// RemoveAllTypes - Recursively strip all the types of this tree.
void TreePatternNode::RemoveAllTypes() {
setType(EEVT::TypeSet()); // Reset to unknown type.
for (unsigned i = 0, e = Types.size(); i != e; ++i)
Types[i] = EEVT::TypeSet(); // Reset to unknown type.
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
getChild(i)->RemoveAllTypes();
@ -914,7 +977,8 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
}
FragTree->setName(getName());
FragTree->UpdateNodeType(getExtType(), TP);
for (unsigned i = 0, e = Types.size(); i != e; ++i)
FragTree->UpdateNodeType(i, getExtType(i), TP);
// Transfer in the old predicates.
for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
@ -932,8 +996,10 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
/// type which should be applied to it. This will infer the type of register
/// references from the register file information, for example.
///
static EEVT::TypeSet getImplicitType(Record *R, bool NotRegisters,
TreePattern &TP) {
static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
bool NotRegisters, TreePattern &TP) {
assert(ResNo == 0 && "FIXME: Unhandled result number");
// Check to see if this is a register or a register class.
if (R->isSubClassOf("RegisterClass")) {
if (NotRegisters)
@ -1044,17 +1110,23 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
// If it's a regclass or something else known, include the type.
return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
bool MadeChange = false;
for (unsigned i = 0, e = Types.size(); i != e; ++i)
MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
NotRegisters, TP), TP);
return MadeChange;
}
if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
// Int inits are always integers. :)
bool MadeChange = Type.EnforceInteger(TP);
assert(Types.size() == 1 && "Invalid IntInit");
if (!hasTypeSet())
// Int inits are always integers. :)
bool MadeChange = Types[0].EnforceInteger(TP);
if (!Types[0].isConcrete())
return MadeChange;
MVT::SimpleValueType VT = getType();
MVT::SimpleValueType VT = getType(0);
if (VT == MVT::iPTR || VT == MVT::iPTRAny)
return MadeChange;
@ -1075,7 +1147,7 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
return MadeChange;
TP.error("Integer value '" + itostr(II->getValue())+
"' is out of range for type '" + getEnumName(getType()) + "'!");
"' is out of range for type '" + getEnumName(getType(0)) + "'!");
return MadeChange;
}
return false;
@ -1083,27 +1155,31 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
// special handling for set, which isn't really an SDNode.
if (getOperator()->getName() == "set") {
assert (getNumChildren() >= 2 && "Missing RHS of a set?");
assert(getNumTypes() == 0 && "Set doesn't produce a value");
assert(getNumChildren() >= 2 && "Missing RHS of a set?");
unsigned NC = getNumChildren();
bool MadeChange = false;
TreePatternNode *SetVal = getChild(NC-1);
bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
for (unsigned i = 0; i < NC-1; ++i) {
MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
TreePatternNode *Child = getChild(i);
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
// Types of operands must match.
MadeChange |=getChild(i)->UpdateNodeType(getChild(NC-1)->getExtType(),TP);
MadeChange |=getChild(NC-1)->UpdateNodeType(getChild(i)->getExtType(),TP);
MadeChange |=UpdateNodeType(MVT::isVoid, TP);
MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
}
return MadeChange;
}
if (getOperator()->getName() == "implicit" ||
getOperator()->getName() == "parallel") {
assert(getNumTypes() == 0 && "Node doesn't produce a value");
bool MadeChange = false;
for (unsigned i = 0; i < getNumChildren(); ++i)
MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
return MadeChange;
}
@ -1112,13 +1188,16 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
assert(getChild(0)->getNumTypes() == 1 &&
getChild(1)->getNumTypes() == 1 && "Unhandled case");
// child #1 of COPY_TO_REGCLASS should be a register class. We don't care
// what type it gets, so if it didn't get a concrete type just give it the
// first viable type from the reg class.
if (!getChild(1)->hasTypeSet() &&
!getChild(1)->getExtType().isCompletelyUnknown()) {
MVT::SimpleValueType RCVT = getChild(1)->getExtType().getTypeList()[0];
MadeChange |= getChild(1)->UpdateNodeType(RCVT, TP);
if (!getChild(1)->hasTypeSet(0) &&
!getChild(1)->getExtType(0).isCompletelyUnknown()) {
MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
}
return MadeChange;
}
@ -1129,22 +1208,26 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
// Apply the result type to the node.
unsigned NumRetVTs = Int->IS.RetVTs.size();
unsigned NumParamVTs = Int->IS.ParamVTs.size();
if (NumRetVTs == 1 && Int->IS.RetVTs[0] == MVT::isVoid)
NumRetVTs = 0;
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP);
MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
if (getNumChildren() != NumParamVTs + NumRetVTs)
if (getNumChildren() != NumParamVTs + 1)
TP.error("Intrinsic '" + Int->Name + "' expects " +
utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " +
utostr(NumParamVTs) + " operands, not " +
utostr(getNumChildren() - 1) + " operands!");
// Apply type info to the intrinsic ID.
MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) {
MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs];
MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
}
return MadeChange;
}
@ -1155,18 +1238,14 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
// Branch, etc. do not produce results and top-level forms in instr pattern
// must have void types.
if (NI.getNumResults() == 0)
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
return MadeChange;
}
if (getOperator()->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
unsigned ResNo = 0;
assert(Inst.getNumResults() <= 1 &&
"Only supports zero or one result instrs!");
"FIXME: Only supports zero or one result instrs!");
CodeGenInstruction &InstInfo =
CDP.getTargetInfo().getInstruction(getOperator());
@ -1195,23 +1274,23 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
assert(FirstImplicitDef->isSubClassOf("Register"));
const std::vector<MVT::SimpleValueType> &RegVTs =
CDP.getTargetInfo().getRegisterVTs(FirstImplicitDef);
if (RegVTs.size() == 1)
if (RegVTs.size() == 1) // FIXME: Generalize.
ResultType = EEVT::TypeSet(RegVTs);
else
ResultType = EEVT::TypeSet(MVT::isVoid, TP);
} else {
// Otherwise, the instruction produces no value result.
// FIXME: Model "no result" different than "one result that is void"
ResultType = EEVT::TypeSet(MVT::isVoid, TP);
}
bool MadeChange = UpdateNodeType(ResultType, TP);
bool MadeChange = false;
if (!ResultType.isCompletelyUnknown())
MadeChange |= UpdateNodeType(ResNo, ResultType, TP);
// If this is an INSERT_SUBREG, constrain the source and destination VTs to
// be the same.
if (getOperator()->getName() == "INSERT_SUBREG") {
MadeChange |= UpdateNodeType(getChild(0)->getExtType(), TP);
MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
}
unsigned ChildNo = 0;
@ -1233,15 +1312,17 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
MVT::SimpleValueType VT;
TreePatternNode *Child = getChild(ChildNo++);
assert(Child->getNumTypes() == 1 && "Unknown case?");
if (OperandNode->isSubClassOf("RegisterClass")) {
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(OperandNode);
MadeChange |= Child->UpdateNodeType(RC.getValueTypes(), TP);
MadeChange |= Child->UpdateNodeType(0, RC.getValueTypes(), TP);
} else if (OperandNode->isSubClassOf("Operand")) {
VT = getValueType(OperandNode->getValueAsDef("Type"));
MadeChange |= Child->UpdateNodeType(VT, TP);
MadeChange |= Child->UpdateNodeType(0, VT, TP);
} else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
MadeChange |= Child->UpdateNodeType(0, MVT::iPTR, TP);
} else if (OperandNode->getName() == "unknown") {
// Nothing to do.
} else {
@ -1373,6 +1454,7 @@ void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
ComputeNamedNodes(N->getChild(i));
}
TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
if (!OpDef) error("Pattern has unexpected operator type!");
@ -1401,11 +1483,11 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
Args.push_back(Dag->getArgName(0));
}
New = new TreePatternNode(DI);
New = new TreePatternNode(DI, 1);
} else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
New = ParseTreePattern(DI);
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
New = new TreePatternNode(II);
New = new TreePatternNode(II, 1);
if (!Dag->getArgName(0).empty())
error("Constant int argument should not have a name!");
} else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
@ -1414,7 +1496,7 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
if (II == 0 || !dynamic_cast<IntInit*>(II))
error("Bits value must be constants!");
New = new TreePatternNode(dynamic_cast<IntInit*>(II));
New = new TreePatternNode(dynamic_cast<IntInit*>(II), 1);
if (!Dag->getArgName(0).empty())
error("Constant int argument should not have a name!");
} else {
@ -1424,7 +1506,8 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
}
// Apply the type cast.
New->UpdateNodeType(getValueType(Operator), *this);
assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
New->UpdateNodeType(0, getValueType(Operator), *this);
if (New->getNumChildren() == 0)
New->setName(Dag->getArgName(0));
return New;
@ -1463,7 +1546,7 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
std::vector<std::pair<Init*, std::string> >()));
--i; // Revisit this node...
} else {
TreePatternNode *Node = new TreePatternNode(DefI);
TreePatternNode *Node = new TreePatternNode(DefI, 1);
Node->setName(Dag->getArgName(i));
Children.push_back(Node);
@ -1475,7 +1558,7 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
}
}
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
TreePatternNode *Node = new TreePatternNode(II);
TreePatternNode *Node = new TreePatternNode(II, 1);
if (!Dag->getArgName(i).empty())
error("Constant int argument should not have a name!");
Children.push_back(Node);
@ -1485,7 +1568,7 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
if (II == 0 || !dynamic_cast<IntInit*>(II))
error("Bits value must be constants!");
TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II),1);
if (!Dag->getArgName(i).empty())
error("Constant int argument should not have a name!");
Children.push_back(Node);
@ -1516,11 +1599,12 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
}
TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1);
Children.insert(Children.begin(), IIDNode);
}
TreePatternNode *Result = new TreePatternNode(Operator, Children);
unsigned NumResults = GetNumNodeResults(Operator, CDP);
TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
Result->setName(Dag->getName());
return Result;
}
@ -1567,7 +1651,11 @@ InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
continue;
}
MadeChange |=Nodes[i]->UpdateNodeType(InNodes[0]->getExtType(),*this);
assert(Nodes[i]->getNumTypes() == 1 &
InNodes[0]->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
*this);
}
}
@ -1575,8 +1663,12 @@ InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
// same type.
if (I->second.size() > 1) {
for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
MadeChange |=Nodes[i]->UpdateNodeType(Nodes[i+1]->getExtType(),*this);
MadeChange |=Nodes[i+1]->UpdateNodeType(Nodes[i]->getExtType(),*this);
TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
assert(N1->getNumTypes() == 1 & N2->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
}
}
}
@ -1874,7 +1966,7 @@ static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
// Ensure that the inputs agree if we've already seen this input.
if (Rec != SlotRec)
I->error("All $" + Pat->getName() + " inputs must agree with each other");
if (Slot->getExtType() != Pat->getExtType())
if (Slot->getExtTypes() != Pat->getExtTypes())
I->error("All $" + Pat->getName() + " inputs must agree with each other");
return true;
}
@ -1913,7 +2005,7 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
// If this is not a set, verify that the children nodes are not void typed,
// and recurse.
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
if (Pat->getChild(i)->getType() == MVT::isVoid)
if (Pat->getChild(i)->getNumTypes() == 0)
I->error("Cannot have void nodes inside of patterns!");
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
InstImpInputs, InstImpResults);
@ -2168,7 +2260,7 @@ void CodeGenDAGPatterns::ParseInstructions() {
// fill in the InstResults map.
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
TreePatternNode *Pat = I->getTree(j);
if (!Pat->hasTypeSet() || Pat->getType() != MVT::isVoid)
if (Pat->getNumTypes() != 0)
I->error("Top-level forms in instruction pattern should have"
" void types");
@ -2188,7 +2280,7 @@ void CodeGenDAGPatterns::ParseInstructions() {
// Check that all of the results occur first in the list.
std::vector<Record*> Results;
TreePatternNode *Res0Node = NULL;
TreePatternNode *Res0Node = 0;
for (unsigned i = 0; i != NumResults; ++i) {
if (i == CGI.OperandList.size())
I->error("'" + InstResults.begin()->first +
@ -2266,7 +2358,7 @@ void CodeGenDAGPatterns::ParseInstructions() {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children);
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
}
ResultNodeOperands.push_back(OpNode);
@ -2277,10 +2369,11 @@ void CodeGenDAGPatterns::ParseInstructions() {
" occurs in pattern but not in operands list!");
TreePatternNode *ResultPattern =
new TreePatternNode(I->getRecord(), ResultNodeOperands);
new TreePatternNode(I->getRecord(), ResultNodeOperands,
GetNumNodeResults(I->getRecord(), *this));
// Copy fully inferred output node type to instruction result pattern.
if (NumResults > 0)
ResultPattern->setType(Res0Node->getExtType());
for (unsigned i = 0; i != NumResults; ++i)
ResultPattern->setType(i, Res0Node->getExtType(i));
// Create and insert the instruction.
// FIXME: InstImpResults and InstImpInputs should not be part of
@ -2341,7 +2434,7 @@ static void FindNames(const TreePatternNode *P,
// If this is the first instance of the name, remember the node.
if (Rec.second++ == 0)
Rec.first = P;
else if (Rec.first->getType() != P->getType())
else if (Rec.first->getExtTypes() != P->getExtTypes())
PatternTop->error("repetition of value: $" + P->getName() +
" where different uses have different types!");
}
@ -2429,23 +2522,29 @@ static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
// If this type is already concrete or completely unknown we can't do
// anything.
if (N->getExtType().isCompletelyUnknown() || N->getExtType().isConcrete())
return false;
for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
continue;
// Otherwise, force its type to the first possibility (an arbitrary choice).
return N->getExtType().MergeInTypeInfo(N->getExtType().getTypeList()[0], TP);
if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
return true;
}
return false;
}
void CodeGenDAGPatterns::ParsePatterns() {
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
Record *CurPattern = Patterns[i];
DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
Record *Operator = OpDef->getDef();
TreePattern *Pattern;
if (Operator->getName() != "parallel")
Pattern = new TreePattern(Patterns[i], Tree, true, *this);
Pattern = new TreePattern(CurPattern, Tree, true, *this);
else {
std::vector<Init*> Values;
RecTy *ListTy = 0;
@ -2470,17 +2569,17 @@ void CodeGenDAGPatterns::ParsePatterns() {
}
}
ListInit *LI = new ListInit(Values, new ListRecTy(ListTy));
Pattern = new TreePattern(Patterns[i], LI, true, *this);
Pattern = new TreePattern(CurPattern, LI, true, *this);
}
// Inline pattern fragments into it.
Pattern->InlinePatternFragments();
ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
if (LI->getSize() == 0) continue; // no pattern.
// Parse the instruction.
TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
// Inline pattern fragments into it.
Result->InlinePatternFragments();
@ -2508,12 +2607,13 @@ void CodeGenDAGPatterns::ParsePatterns() {
// resolve cases where the input type is known to be a pointer type (which
// is considered resolved), but the result knows it needs to be 32- or
// 64-bits. Infer the other way for good measure.
if (!Result->getTree(0)->getExtType().isVoid() &&
!Pattern->getTree(0)->getExtType().isVoid()) {
for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
Pattern->getTree(0)->getNumTypes());
i != e; ++i) {
IterateInference = Pattern->getTree(0)->
UpdateNodeType(Result->getTree(0)->getExtType(), *Result);
UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
IterateInference |= Result->getTree(0)->
UpdateNodeType(Pattern->getTree(0)->getExtType(), *Result);
UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
}
// If our iteration has converged and the input pattern's types are fully
@ -2559,25 +2659,29 @@ void CodeGenDAGPatterns::ParsePatterns() {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children);
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
}
ResultNodeOperands.push_back(OpNode);
}
DstPattern = Result->getOnlyTree();
if (!DstPattern->isLeaf())
DstPattern = new TreePatternNode(DstPattern->getOperator(),
ResultNodeOperands);
DstPattern->setType(Result->getOnlyTree()->getExtType());
ResultNodeOperands,
DstPattern->getNumTypes());
for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
Temp.InferAllTypes();
AddPatternToMatch(Pattern,
PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
PatternToMatch(CurPattern->getValueAsListInit("Predicates"),
Pattern->getTree(0),
Temp.getOnlyTree(), InstImpResults,
Patterns[i]->getValueAsInt("AddedComplexity"),
Patterns[i]->getID()));
CurPattern->getValueAsInt("AddedComplexity"),
CurPattern->getID()));
}
}
@ -2611,13 +2715,15 @@ static void CombineChildVariants(TreePatternNode *Orig,
std::vector<TreePatternNode*> NewChildren;
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
Orig->getNumTypes());
// Copy over properties.
R->setName(Orig->getName());
R->setPredicateFns(Orig->getPredicateFns());
R->setTransformFn(Orig->getTransformFn());
R->setType(Orig->getExtType());
for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
R->setType(i, Orig->getExtType(i));
// If this pattern cannot match, do not include it as a variant.
std::string ErrString;

View File

@ -238,10 +238,10 @@ public:
/// patterns), and as such should be ref counted. We currently just leak all
/// TreePatternNode objects!
class TreePatternNode {
/// The type of this node. Before and during type inference, this may be a
/// set of possible types. After (successful) type inference, this is a
/// single type.
EEVT::TypeSet Type;
/// The type of each node result. Before and during type inference, each
/// result may be a set of possible types. After (successful) type inference,
/// each is a single concrete type.
SmallVector<EEVT::TypeSet, 1> Types;
/// Operator - The Record for the operator if this is an interior node (not
/// a leaf).
@ -265,10 +265,14 @@ class TreePatternNode {
std::vector<TreePatternNode*> Children;
public:
TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch)
: Operator(Op), Val(0), TransformFn(0), Children(Ch) { }
TreePatternNode(Init *val) // leaf ctor
TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
unsigned NumResults)
: Operator(Op), Val(0), TransformFn(0), Children(Ch) {
Types.resize(NumResults);
}
TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
: Operator(0), Val(val), TransformFn(0) {
Types.resize(NumResults);
}
~TreePatternNode();
@ -278,14 +282,24 @@ public:
bool isLeaf() const { return Val != 0; }
// Type accessors.
MVT::SimpleValueType getType() const { return Type.getConcrete(); }
const EEVT::TypeSet &getExtType() const { return Type; }
EEVT::TypeSet &getExtType() { return Type; }
void setType(const EEVT::TypeSet &T) { Type = T; }
unsigned getNumTypes() const { return Types.size(); }
MVT::SimpleValueType getType(unsigned ResNo) const {
return Types[ResNo].getConcrete();
}
const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
bool hasTypeSet() const { return Type.isConcrete(); }
bool isTypeCompletelyUnknown() const { return Type.isCompletelyUnknown(); }
bool isTypeDynamicallyResolved() const { return Type.isDynamicallyResolved();}
bool hasTypeSet(unsigned ResNo) const {
return Types[ResNo].isConcrete();
}
bool isTypeCompletelyUnknown(unsigned ResNo) const {
return Types[ResNo].isCompletelyUnknown();
}
bool isTypeDynamicallyResolved(unsigned ResNo) const {
return Types[ResNo].isDynamicallyResolved();
}
Init *getLeafValue() const { assert(isLeaf()); return Val; }
Record *getOperator() const { assert(!isLeaf()); return Operator; }
@ -378,18 +392,22 @@ public: // Higher level manipulation routines.
/// information. If N already contains a conflicting type, then throw an
/// exception. This returns true if any information was updated.
///
bool UpdateNodeType(const EEVT::TypeSet &InTy, TreePattern &TP) {
return Type.MergeInTypeInfo(InTy, TP);
bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
TreePattern &TP) {
return Types[ResNo].MergeInTypeInfo(InTy, TP);
}
bool UpdateNodeType(MVT::SimpleValueType InTy, TreePattern &TP) {
return Type.MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
TreePattern &TP) {
return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
}
/// ContainsUnresolvedType - Return true if this tree contains any
/// unresolved types.
bool ContainsUnresolvedType() const {
if (!hasTypeSet()) return true;
for (unsigned i = 0, e = Types.size(); i != e; ++i)
if (!Types[i].isConcrete()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->ContainsUnresolvedType()) return true;
return false;
@ -679,6 +697,11 @@ public:
assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
return PatternFragments.find(R)->second;
}
TreePattern *getPatternFragmentIfRead(Record *R) const {
if (!PatternFragments.count(R)) return 0;
return PatternFragments.find(R)->second;
}
typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator
pf_iterator;
pf_iterator pf_begin() const { return PatternFragments.begin(); }

View File

@ -25,7 +25,6 @@ using namespace llvm;
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
assert(P->hasTypeSet() && "Not a valid pattern node to size!");
unsigned Size = 3; // The node itself.
// If the root node is a ConstantSDNode, increases its size.
// e.g. (set R32:$dst, 0).
@ -49,7 +48,8 @@ static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getType() != MVT::Other)
if (!Child->isLeaf() && Child->getNumTypes() &&
Child->getType(0) != MVT::Other)
Size += getPatternSize(Child, CGP);
else if (Child->isLeaf()) {
if (dynamic_cast<IntInit*>(Child->getLeafValue()))

View File

@ -409,8 +409,10 @@ void MatcherGen::EmitMatchCode(const TreePatternNode *N,
// need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
// reinfer any correlated types.
bool DoTypeCheck = false;
if (NodeNoTypes->getExtType() != N->getExtType()) {
NodeNoTypes->setType(N->getExtType());
if (NodeNoTypes->getNumTypes() != 0 &&
NodeNoTypes->getExtType(0) != N->getExtType(0)) {
assert(NodeNoTypes->getNumTypes() == 1 && "FIXME: Handle multiple results");
NodeNoTypes->setType(0, N->getExtType(0));
InferPossibleTypes();
DoTypeCheck = true;
}
@ -442,8 +444,10 @@ void MatcherGen::EmitMatchCode(const TreePatternNode *N,
for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
if (DoTypeCheck)
AddMatcher(new CheckTypeMatcher(N->getType()));
if (DoTypeCheck) {
assert(N->getNumTypes() == 1);
AddMatcher(new CheckTypeMatcher(N->getType(0)));
}
}
/// EmitMatcherCode - Generate the code that matches the predicate of this
@ -567,7 +571,7 @@ void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
assert(N->isLeaf() && "Must be a leaf");
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType()));
AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
@ -575,13 +579,13 @@ void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
// If this is an explicit register reference, handle it.
if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
if (DI->getDef()->isSubClassOf("Register")) {
AddMatcher(new EmitRegisterMatcher(DI->getDef(), N->getType()));
AddMatcher(new EmitRegisterMatcher(DI->getDef(), N->getType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
if (DI->getDef()->getName() == "zero_reg") {
AddMatcher(new EmitRegisterMatcher(0, N->getType()));
AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
@ -708,10 +712,11 @@ EmitResultInstructionAsOperand(const TreePatternNode *N,
// Determine the result types.
SmallVector<MVT::SimpleValueType, 4> ResultVTs;
if (N->getType() != MVT::isVoid) {
if (N->getNumTypes()) {
// FIXME2: If the node has multiple results, we should add them. For now,
// preserve existing behavior?!
ResultVTs.push_back(N->getType());
assert(N->getNumTypes() == 1);
ResultVTs.push_back(N->getType(0));
}
// If this is the root instruction of a pattern that has physical registers in
@ -723,7 +728,7 @@ EmitResultInstructionAsOperand(const TreePatternNode *N,
// If the root came from an implicit def in the instruction handling stuff,
// don't re-add it.
Record *HandledReg = 0;
if (NumResults == 0 && N->getType() != MVT::isVoid &&
if (NumResults == 0 && N->getNumTypes() != 0 &&
!II.ImplicitDefs.empty())
HandledReg = II.ImplicitDefs[0];

View File

@ -70,13 +70,16 @@ struct OperandsSignature {
for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
TreePatternNode *Op = InstPatNode->getChild(i);
// For now, filter out any operand with a predicate.
if (!Op->getPredicateFns().empty())
return false;
// For now, filter out any operand with multiple values.
assert(Op->hasTypeSet() && "Type infererence not done?");
// For now, all the operands must have the same type.
if (Op->getType() != VT)
if (!Op->getPredicateFns().empty() ||
Op->getNumTypes() != 1)
return false;
assert(Op->hasTypeSet(0) && "Type infererence not done?");
// For now, all the operands must have the same type.
if (Op->getType(0) != VT)
return false;
if (!Op->isLeaf()) {
if (Op->getOperator()->getName() == "imm") {
Operands.push_back("i");
@ -295,10 +298,14 @@ void FastISelMap::CollectPatterns(CodeGenDAGPatterns &CGP) {
Record *InstPatOp = InstPatNode->getOperator();
std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
MVT::SimpleValueType RetVT = InstPatNode->getType();
assert(InstPatNode->getNumTypes() <= 1);
MVT::SimpleValueType RetVT = MVT::isVoid;
if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
MVT::SimpleValueType VT = RetVT;
if (InstPatNode->getNumChildren())
VT = InstPatNode->getChild(0)->getType();
if (InstPatNode->getNumChildren()) {
assert(InstPatNode->getChild(0)->getNumTypes() == 1);
VT = InstPatNode->getChild(0)->getType(0);
}
// For now, filter out instructions which just set a register to
// an Operand or an immediate, like MOV32ri.