fold: sqrt(x * x * y) -> fabs(x) * sqrt(y)

If a square root call has an FP multiplication argument that can be reassociated,
then we can hoist a repeated factor out of the square root call and into a fabs().

In the simplest case, this:

   y = sqrt(x * x);

becomes this:

   y = fabs(x);

This patch relies on an earlier optimization in instcombine or reassociate to put the
multiplication tree into a canonical form, so we don't have to search over
every permutation of the multiplication tree.

Because there are no IR-level FastMathFlags for intrinsics (PR21290), we have to
use function-level attributes to do this optimization. This needs to be fixed
for both the intrinsics and in the backend.

Differential Revision: http://reviews.llvm.org/D5787



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219944 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel
2014-10-16 18:48:17 +00:00
parent c40dab2069
commit d8214db086
3 changed files with 258 additions and 1 deletions

View File

@@ -530,3 +530,173 @@ define float @fact_div6(float %x) {
; CHECK: fact_div6
; CHECK: %t3 = fsub fast float %t1, %t2
}
; =========================================================================
;
; Test-cases for square root
;
; =========================================================================
; A squared factor fed into a square root intrinsic should be hoisted out
; as a fabs() value.
; We have to rely on a function-level attribute to enable this optimization
; because intrinsics don't currently have access to IR-level fast-math
; flags. If that changes, we can relax the requirement on all of these
; tests to just specify 'fast' on the sqrt.
attributes #0 = { "unsafe-fp-math" = "true" }
declare double @llvm.sqrt.f64(double)
define double @sqrt_intrinsic_arg_squared(double %x) #0 {
%mul = fmul fast double %x, %x
%sqrt = call double @llvm.sqrt.f64(double %mul)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_arg_squared(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: ret double %fabs
}
; Check all 6 combinations of a 3-way multiplication tree where
; one factor is repeated.
define double @sqrt_intrinsic_three_args1(double %x, double %y) #0 {
%mul = fmul fast double %y, %x
%mul2 = fmul fast double %mul, %x
%sqrt = call double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args1(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args2(double %x, double %y) #0 {
%mul = fmul fast double %x, %y
%mul2 = fmul fast double %mul, %x
%sqrt = call double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args2(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args3(double %x, double %y) #0 {
%mul = fmul fast double %x, %x
%mul2 = fmul fast double %mul, %y
%sqrt = call double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args3(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args4(double %x, double %y) #0 {
%mul = fmul fast double %y, %x
%mul2 = fmul fast double %x, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args4(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args5(double %x, double %y) #0 {
%mul = fmul fast double %x, %y
%mul2 = fmul fast double %x, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args5(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args6(double %x, double %y) #0 {
%mul = fmul fast double %x, %x
%mul2 = fmul fast double %y, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args6(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_arg_4th(double %x) #0 {
%mul = fmul fast double %x, %x
%mul2 = fmul fast double %mul, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_arg_4th(
; CHECK-NEXT: %mul = fmul fast double %x, %x
; CHECK-NEXT: ret double %mul
}
define double @sqrt_intrinsic_arg_5th(double %x) #0 {
%mul = fmul fast double %x, %x
%mul2 = fmul fast double %mul, %x
%mul3 = fmul fast double %mul2, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul3)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_arg_5th(
; CHECK-NEXT: %mul = fmul fast double %x, %x
; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %x)
; CHECK-NEXT: %1 = fmul fast double %mul, %sqrt1
; CHECK-NEXT: ret double %1
}
; Check that square root calls have the same behavior.
declare float @sqrtf(float)
declare double @sqrt(double)
declare fp128 @sqrtl(fp128)
define float @sqrt_call_squared_f32(float %x) #0 {
%mul = fmul fast float %x, %x
%sqrt = call float @sqrtf(float %mul)
ret float %sqrt
; CHECK-LABEL: sqrt_call_squared_f32(
; CHECK-NEXT: %fabs = call float @llvm.fabs.f32(float %x)
; CHECK-NEXT: ret float %fabs
}
define double @sqrt_call_squared_f64(double %x) #0 {
%mul = fmul fast double %x, %x
%sqrt = call double @sqrt(double %mul)
ret double %sqrt
; CHECK-LABEL: sqrt_call_squared_f64(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: ret double %fabs
}
define fp128 @sqrt_call_squared_f128(fp128 %x) #0 {
%mul = fmul fast fp128 %x, %x
%sqrt = call fp128 @sqrtl(fp128 %mul)
ret fp128 %sqrt
; CHECK-LABEL: sqrt_call_squared_f128(
; CHECK-NEXT: %fabs = call fp128 @llvm.fabs.f128(fp128 %x)
; CHECK-NEXT: ret fp128 %fabs
}