Resurrect r191017 " GVN proceeds in the presence of dead code" plus a fix to PR17307 & 17308.

The problem of r191017 is that when GVN fabricate a val-number for a dead instruction (in order
to make following expr-PRE happy), it forget to fabricate a leader-table entry for it as well.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191118 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Shuxin Yang
2013-09-20 23:12:57 +00:00
parent 4a20092e63
commit d93e8a06b2
9 changed files with 388 additions and 28 deletions

View File

@@ -21,6 +21,7 @@
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
@@ -507,7 +508,9 @@ namespace {
enum ValType {
SimpleVal, // A simple offsetted value that is accessed.
LoadVal, // A value produced by a load.
MemIntrin // A memory intrinsic which is loaded from.
MemIntrin, // A memory intrinsic which is loaded from.
UndefVal // A UndefValue representing a value from dead block (which
// is not yet physically removed from the CFG).
};
/// V - The value that is live out of the block.
@@ -545,10 +548,20 @@ namespace {
Res.Offset = Offset;
return Res;
}
static AvailableValueInBlock getUndef(BasicBlock *BB) {
AvailableValueInBlock Res;
Res.BB = BB;
Res.Val.setPointer(0);
Res.Val.setInt(UndefVal);
Res.Offset = 0;
return Res;
}
bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
bool isUndefValue() const { return Val.getInt() == UndefVal; }
Value *getSimpleValue() const {
assert(isSimpleValue() && "Wrong accessor");
@@ -576,6 +589,7 @@ namespace {
DominatorTree *DT;
const DataLayout *TD;
const TargetLibraryInfo *TLI;
SetVector<BasicBlock *> DeadBlocks;
ValueTable VN;
@@ -698,6 +712,9 @@ namespace {
unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
const BasicBlockEdge &Root);
bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
bool processFoldableCondBr(BranchInst *BI);
void addDeadBlock(BasicBlock *BB);
void assignValNumForDeadCode();
};
char GVN::ID = 0;
@@ -1253,8 +1270,10 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
// just use the dominating value directly.
if (ValuesPerBlock.size() == 1 &&
gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
LI->getParent()))
LI->getParent())) {
assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
}
// Otherwise, we have to construct SSA form.
SmallVector<PHINode*, 8> NewPHIs;
@@ -1324,7 +1343,7 @@ Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) c
<< *getCoercedLoadValue() << '\n'
<< *Res << '\n' << "\n\n\n");
}
} else {
} else if (isMemIntrinValue()) {
const DataLayout *TD = gvn.getDataLayout();
assert(TD && "Need target data to handle type mismatch case");
Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
@@ -1332,6 +1351,10 @@ Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) c
DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
<< " " << *getMemIntrinValue() << '\n'
<< *Res << '\n' << "\n\n\n");
} else {
assert(isUndefValue() && "Should be UndefVal");
DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
return UndefValue::get(LoadTy);
}
return Res;
}
@@ -1355,6 +1378,13 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
BasicBlock *DepBB = Deps[i].getBB();
MemDepResult DepInfo = Deps[i].getResult();
if (DeadBlocks.count(DepBB)) {
// Dead dependent mem-op disguise as a load evaluating the same value
// as the load in question.
ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
continue;
}
if (!DepInfo.isDef() && !DepInfo.isClobber()) {
UnavailableBlocks.push_back(DepBB);
continue;
@@ -2191,11 +2221,13 @@ bool GVN::processInstruction(Instruction *I) {
// For conditional branches, we can perform simple conditional propagation on
// the condition value itself.
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
if (!BI->isConditional())
return false;
Value *BranchCond = BI->getCondition();
if (isa<Constant>(BI->getCondition()))
return processFoldableCondBr(BI);
Value *BranchCond = BI->getCondition();
BasicBlock *TrueSucc = BI->getSuccessor(0);
BasicBlock *FalseSucc = BI->getSuccessor(1);
// Avoid multiple edges early.
@@ -2312,6 +2344,9 @@ bool GVN::runOnFunction(Function& F) {
}
if (EnablePRE) {
// Fabricate val-num for dead-code in order to suppress assertion in
// performPRE().
assignValNumForDeadCode();
bool PREChanged = true;
while (PREChanged) {
PREChanged = performPRE(F);
@@ -2325,6 +2360,9 @@ bool GVN::runOnFunction(Function& F) {
// Actually, when this happens, we should just fully integrate PRE into GVN.
cleanupGlobalSets();
// Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
// iteration.
DeadBlocks.clear();
return Changed;
}
@@ -2335,6 +2373,9 @@ bool GVN::processBlock(BasicBlock *BB) {
// (and incrementing BI before processing an instruction).
assert(InstrsToErase.empty() &&
"We expect InstrsToErase to be empty across iterations");
if (DeadBlocks.count(BB))
return false;
bool ChangedFunction = false;
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
@@ -2628,3 +2669,124 @@ void GVN::verifyRemoved(const Instruction *Inst) const {
}
}
}
// BB is declared dead, which implied other blocks become dead as well. This
// function is to add all these blocks to "DeadBlocks". For the dead blocks'
// live successors, update their phi nodes by replacing the operands
// corresponding to dead blocks with UndefVal.
//
void GVN::addDeadBlock(BasicBlock *BB) {
SmallVector<BasicBlock *, 4> NewDead;
SmallSetVector<BasicBlock *, 4> DF;
NewDead.push_back(BB);
while (!NewDead.empty()) {
BasicBlock *D = NewDead.pop_back_val();
if (DeadBlocks.count(D))
continue;
// All blocks dominated by D are dead.
SmallVector<BasicBlock *, 8> Dom;
DT->getDescendants(D, Dom);
DeadBlocks.insert(Dom.begin(), Dom.end());
// Figure out the dominance-frontier(D).
for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
E = Dom.end(); I != E; I++) {
BasicBlock *B = *I;
for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
BasicBlock *S = *SI;
if (DeadBlocks.count(S))
continue;
bool AllPredDead = true;
for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
if (!DeadBlocks.count(*PI)) {
AllPredDead = false;
break;
}
if (!AllPredDead) {
// S could be proved dead later on. That is why we don't update phi
// operands at this moment.
DF.insert(S);
} else {
// While S is not dominated by D, it is dead by now. This could take
// place if S already have a dead predecessor before D is declared
// dead.
NewDead.push_back(S);
}
}
}
}
// For the dead blocks' live successors, update their phi nodes by replacing
// the operands corresponding to dead blocks with UndefVal.
for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
I != E; I++) {
BasicBlock *B = *I;
if (DeadBlocks.count(B))
continue;
for (pred_iterator PI = pred_begin(B), PE = pred_end(B); PI != PE; PI++) {
BasicBlock *P = *PI;
if (!DeadBlocks.count(P))
continue;
for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
PHINode &Phi = cast<PHINode>(*II);
Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
UndefValue::get(Phi.getType()));
}
}
}
}
// If the given branch is recognized as a foldable branch (i.e. conditional
// branch with constant condition), it will perform following analyses and
// transformation.
// 1) If the dead out-coming edge is a critical-edge, split it. Let
// R be the target of the dead out-coming edge.
// 1) Identify the set of dead blocks implied by the branch's dead outcoming
// edge. The result of this step will be {X| X is dominated by R}
// 2) Identify those blocks which haves at least one dead prodecessor. The
// result of this step will be dominance-frontier(R).
// 3) Update the PHIs in DF(R) by replacing the operands corresponding to
// dead blocks with "UndefVal" in an hope these PHIs will optimized away.
//
// Return true iff *NEW* dead code are found.
bool GVN::processFoldableCondBr(BranchInst *BI) {
if (!BI || BI->isUnconditional())
return false;
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
if (!Cond)
return false;
BasicBlock *DeadRoot = Cond->getZExtValue() ?
BI->getSuccessor(1) : BI->getSuccessor(0);
if (DeadBlocks.count(DeadRoot))
return false;
if (!DeadRoot->getSinglePredecessor())
DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
addDeadBlock(DeadRoot);
return true;
}
// performPRE() will trigger assert if it come across an instruciton without
// associated val-num. As it normally has far more live instructions than dead
// instructions, it makes more sense just to "fabricate" a val-number for the
// dead code than checking if instruction involved is dead or not.
void GVN::assignValNumForDeadCode() {
for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
E = DeadBlocks.end(); I != E; I++) {
BasicBlock *BB = *I;
for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
II != EE; II++) {
Instruction *Inst = &*II;
unsigned ValNum = VN.lookup_or_add(Inst);
addToLeaderTable(ValNum, Inst, BB);
}
}
}