mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
Teach LSR sink to sink the immediate portion of the common expression back into uses if they fit in address modes of all the uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65215 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
5a45d76c25
commit
d9fb712403
@ -26,19 +26,19 @@
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
|
||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "llvm/Target/TargetLowering.h"
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
using namespace llvm;
|
||||
|
||||
STATISTIC(NumReduced , "Number of GEPs strength reduced");
|
||||
@ -46,6 +46,7 @@ STATISTIC(NumInserted, "Number of PHIs inserted");
|
||||
STATISTIC(NumVariable, "Number of PHIs with variable strides");
|
||||
STATISTIC(NumEliminated, "Number of strides eliminated");
|
||||
STATISTIC(NumShadow, "Number of Shadow IVs optimized");
|
||||
STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses");
|
||||
|
||||
static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
|
||||
cl::init(false),
|
||||
@ -954,21 +955,17 @@ static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
|
||||
/// that can fit into the immediate field of instructions in the target.
|
||||
/// Accumulate these immediate values into the Imm value.
|
||||
static void MoveImmediateValues(const TargetLowering *TLI,
|
||||
Instruction *User,
|
||||
const Type *UseTy,
|
||||
SCEVHandle &Val, SCEVHandle &Imm,
|
||||
bool isAddress, Loop *L,
|
||||
ScalarEvolution *SE) {
|
||||
const Type *UseTy = User->getType();
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(User))
|
||||
UseTy = SI->getOperand(0)->getType();
|
||||
|
||||
if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
|
||||
std::vector<SCEVHandle> NewOps;
|
||||
NewOps.reserve(SAE->getNumOperands());
|
||||
|
||||
for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
|
||||
SCEVHandle NewOp = SAE->getOperand(i);
|
||||
MoveImmediateValues(TLI, User, NewOp, Imm, isAddress, L, SE);
|
||||
MoveImmediateValues(TLI, UseTy, NewOp, Imm, isAddress, L, SE);
|
||||
|
||||
if (!NewOp->isLoopInvariant(L)) {
|
||||
// If this is a loop-variant expression, it must stay in the immediate
|
||||
@ -987,7 +984,7 @@ static void MoveImmediateValues(const TargetLowering *TLI,
|
||||
} else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
|
||||
// Try to pull immediates out of the start value of nested addrec's.
|
||||
SCEVHandle Start = SARE->getStart();
|
||||
MoveImmediateValues(TLI, User, Start, Imm, isAddress, L, SE);
|
||||
MoveImmediateValues(TLI, UseTy, Start, Imm, isAddress, L, SE);
|
||||
|
||||
if (Start != SARE->getStart()) {
|
||||
std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
|
||||
@ -1002,7 +999,7 @@ static void MoveImmediateValues(const TargetLowering *TLI,
|
||||
|
||||
SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
|
||||
SCEVHandle NewOp = SME->getOperand(1);
|
||||
MoveImmediateValues(TLI, User, NewOp, SubImm, isAddress, L, SE);
|
||||
MoveImmediateValues(TLI, UseTy, NewOp, SubImm, isAddress, L, SE);
|
||||
|
||||
// If we extracted something out of the subexpressions, see if we can
|
||||
// simplify this!
|
||||
@ -1034,6 +1031,16 @@ static void MoveImmediateValues(const TargetLowering *TLI,
|
||||
// Otherwise, no immediates to move.
|
||||
}
|
||||
|
||||
static void MoveImmediateValues(const TargetLowering *TLI,
|
||||
Instruction *User,
|
||||
SCEVHandle &Val, SCEVHandle &Imm,
|
||||
bool isAddress, Loop *L,
|
||||
ScalarEvolution *SE) {
|
||||
const Type *UseTy = User->getType();
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(User))
|
||||
UseTy = SI->getOperand(0)->getType();
|
||||
MoveImmediateValues(TLI, UseTy, Val, Imm, isAddress, L, SE);
|
||||
}
|
||||
|
||||
/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
|
||||
/// added together. This is used to reassociate common addition subexprs
|
||||
@ -1450,6 +1457,9 @@ SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
|
||||
UsersToProcess[i].Base =
|
||||
SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
|
||||
} else {
|
||||
// Not all uses are outside the loop.
|
||||
AllUsesAreOutsideLoop = false;
|
||||
|
||||
// Addressing modes can be folded into loads and stores. Be careful that
|
||||
// the store is through the expression, not of the expression though.
|
||||
bool isPHI = false;
|
||||
@ -1460,9 +1470,6 @@ SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
|
||||
++NumPHI;
|
||||
}
|
||||
|
||||
// Not all uses are outside the loop.
|
||||
AllUsesAreOutsideLoop = false;
|
||||
|
||||
if (isAddress)
|
||||
HasAddress = true;
|
||||
|
||||
@ -1475,7 +1482,7 @@ SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
|
||||
}
|
||||
}
|
||||
|
||||
// If one of the use if a PHI node and all other uses are addresses, still
|
||||
// If one of the use is a PHI node and all other uses are addresses, still
|
||||
// allow iv reuse. Essentially we are trading one constant multiplication
|
||||
// for one fewer iv.
|
||||
if (NumPHI > 1)
|
||||
@ -1754,6 +1761,28 @@ LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
|
||||
"commonbase", PreInsertPt);
|
||||
}
|
||||
|
||||
static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
|
||||
const Type *ReplacedTy,
|
||||
std::vector<BasedUser> &UsersToProcess,
|
||||
const TargetLowering *TLI) {
|
||||
SmallVector<Instruction*, 16> AddrModeInsts;
|
||||
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
|
||||
if (UsersToProcess[i].isUseOfPostIncrementedValue)
|
||||
continue;
|
||||
ExtAddrMode AddrMode =
|
||||
AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
|
||||
ReplacedTy, UsersToProcess[i].Inst,
|
||||
AddrModeInsts, *TLI);
|
||||
if (GV && GV != AddrMode.BaseGV)
|
||||
return false;
|
||||
if (Offset && !AddrMode.BaseOffs)
|
||||
// FIXME: How to accurate check it's immediate offset is folded.
|
||||
return false;
|
||||
AddrModeInsts.clear();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
|
||||
/// stride of IV. All of the users may have different starting values, and this
|
||||
/// may not be the only stride (we know it is if isOnlyStride is true).
|
||||
@ -1797,6 +1826,41 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
|
||||
|
||||
const Type *ReplacedTy = CommonExprs->getType();
|
||||
|
||||
// If all uses are addresses, consider sinking the immediate part of the
|
||||
// common expression back into uses if they can fit in the immediate fields.
|
||||
if (HaveCommonExprs && AllUsesAreAddresses) {
|
||||
SCEVHandle NewCommon = CommonExprs;
|
||||
SCEVHandle Imm = SE->getIntegerSCEV(0, ReplacedTy);
|
||||
MoveImmediateValues(TLI, ReplacedTy, NewCommon, Imm, true, L, SE);
|
||||
if (!Imm->isZero()) {
|
||||
bool DoSink = true;
|
||||
|
||||
// If the immediate part of the common expression is a GV, check if it's
|
||||
// possible to fold it into the target addressing mode.
|
||||
GlobalValue *GV = 0;
|
||||
if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm)) {
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
|
||||
if (CE->getOpcode() == Instruction::PtrToInt)
|
||||
GV = dyn_cast<GlobalValue>(CE->getOperand(0));
|
||||
}
|
||||
int64_t Offset = 0;
|
||||
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
|
||||
Offset = SC->getValue()->getSExtValue();
|
||||
if (GV || Offset)
|
||||
DoSink = IsImmFoldedIntoAddrMode(GV, Offset, ReplacedTy,
|
||||
UsersToProcess, TLI);
|
||||
|
||||
if (DoSink) {
|
||||
DOUT << " Sinking " << *Imm << " back down into uses\n";
|
||||
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
|
||||
UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
|
||||
CommonExprs = NewCommon;
|
||||
HaveCommonExprs = !CommonExprs->isZero();
|
||||
++NumImmSunk;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now that we know what we need to do, insert the PHI node itself.
|
||||
//
|
||||
DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
|
||||
@ -2556,7 +2620,8 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
|
||||
bool HasOneStride = IVUsesByStride.size() == 1;
|
||||
|
||||
#ifndef NDEBUG
|
||||
DOUT << "\nLSR on ";
|
||||
DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
|
||||
<< "\" ";
|
||||
DEBUG(L->dump());
|
||||
#endif
|
||||
|
||||
|
@ -4,29 +4,43 @@
|
||||
%struct.bnode = type { i16, double, [3 x double], i32, i32, [3 x double], [3 x double], [3 x double], double, %struct.bnode*, %struct.bnode* }
|
||||
%struct.node = type { i16, double, [3 x double], i32, i32 }
|
||||
|
||||
define fastcc void @old_main() {
|
||||
define i32 @main(i32 %argc, i8** nocapture %argv) nounwind {
|
||||
entry:
|
||||
%tmp44 = malloc %struct.anon ; <%struct.anon*> [#uses=2]
|
||||
store double 4.000000e+00, double* null, align 4
|
||||
br label %bb41
|
||||
%0 = malloc %struct.anon ; <%struct.anon*> [#uses=2]
|
||||
%1 = getelementptr %struct.anon* %0, i32 0, i32 2 ; <%struct.node**> [#uses=1]
|
||||
br label %bb14.i
|
||||
|
||||
bb41: ; preds = %uniform_testdata.exit, %entry
|
||||
%i.0110 = phi i32 [ 0, %entry ], [ %tmp48, %uniform_testdata.exit ] ; <i32> [#uses=2]
|
||||
%tmp48 = add i32 %i.0110, 1 ; <i32> [#uses=1]
|
||||
br i1 false, label %uniform_testdata.exit, label %bb33.preheader.i
|
||||
bb14.i: ; preds = %bb14.i, %entry
|
||||
%i8.0.reg2mem.0.i = phi i32 [ 0, %entry ], [ %2, %bb14.i ] ; <i32> [#uses=1]
|
||||
%2 = add i32 %i8.0.reg2mem.0.i, 1 ; <i32> [#uses=2]
|
||||
%exitcond74.i = icmp eq i32 %2, 32 ; <i1> [#uses=1]
|
||||
br i1 %exitcond74.i, label %bb32.i, label %bb14.i
|
||||
|
||||
bb33.preheader.i: ; preds = %bb41
|
||||
ret void
|
||||
bb32.i: ; preds = %bb32.i, %bb14.i
|
||||
%tmp.0.reg2mem.0.i = phi i32 [ %indvar.next63.i, %bb32.i ], [ 0, %bb14.i ] ; <i32> [#uses=1]
|
||||
%indvar.next63.i = add i32 %tmp.0.reg2mem.0.i, 1 ; <i32> [#uses=2]
|
||||
%exitcond64.i = icmp eq i32 %indvar.next63.i, 64 ; <i1> [#uses=1]
|
||||
br i1 %exitcond64.i, label %bb47.loopexit.i, label %bb32.i
|
||||
|
||||
uniform_testdata.exit: ; preds = %bb41
|
||||
%tmp57 = getelementptr %struct.anon* %tmp44, i32 0, i32 3, i32 %i.0110 ; <%struct.bnode**> [#uses=1]
|
||||
store %struct.bnode* null, %struct.bnode** %tmp57, align 4
|
||||
br i1 false, label %bb154, label %bb41
|
||||
bb.i.i: ; preds = %bb47.loopexit.i
|
||||
unreachable
|
||||
|
||||
bb154: ; preds = %bb154, %uniform_testdata.exit
|
||||
br i1 false, label %bb166, label %bb154
|
||||
stepsystem.exit.i: ; preds = %bb47.loopexit.i
|
||||
store %struct.node* null, %struct.node** %1, align 4
|
||||
br label %bb.i6.i
|
||||
|
||||
bb166: ; preds = %bb154
|
||||
%tmp169 = getelementptr %struct.anon* %tmp44, i32 0, i32 3, i32 0 ; <%struct.bnode**> [#uses=0]
|
||||
ret void
|
||||
bb.i6.i: ; preds = %bb.i6.i, %stepsystem.exit.i
|
||||
%tmp.0.i.i = add i32 0, -1 ; <i32> [#uses=1]
|
||||
%3 = icmp slt i32 %tmp.0.i.i, 0 ; <i1> [#uses=1]
|
||||
br i1 %3, label %bb107.i.i, label %bb.i6.i
|
||||
|
||||
bb107.i.i: ; preds = %bb107.i.i, %bb.i6.i
|
||||
%q_addr.0.i.i.in = phi %struct.bnode** [ null, %bb107.i.i ], [ %4, %bb.i6.i ] ; <%struct.bnode**> [#uses=1]
|
||||
%q_addr.0.i.i = load %struct.bnode** %q_addr.0.i.i.in ; <%struct.bnode*> [#uses=0]
|
||||
br label %bb107.i.i
|
||||
|
||||
bb47.loopexit.i: ; preds = %bb32.i
|
||||
%4 = getelementptr %struct.anon* %0, i32 0, i32 4, i32 0 ; <%struct.bnode**> [#uses=1]
|
||||
%5 = icmp eq %struct.node* null, null ; <i1> [#uses=1]
|
||||
br i1 %5, label %stepsystem.exit.i, label %bb.i.i
|
||||
}
|
||||
|
@ -1,8 +1,10 @@
|
||||
; RUN: llvm-as < %s | llc -march=x86 -relocation-model=pic | \
|
||||
; RUN: grep {, 4} | count 1
|
||||
; RUN: llvm-as < %s | llc -march=x86 | not grep lea
|
||||
;
|
||||
; Make sure the common loop invariant A is hoisted up to preheader,
|
||||
; since too many registers are needed to subsume it into the addressing modes.
|
||||
; It's safe to sink A in when it's not pic.
|
||||
|
||||
@A = global [16 x [16 x i32]] zeroinitializer, align 32 ; <[16 x [16 x i32]]*> [#uses=2]
|
||||
|
||||
|
78
test/CodeGen/X86/loop-strength-reduce8.ll
Normal file
78
test/CodeGen/X86/loop-strength-reduce8.ll
Normal file
@ -0,0 +1,78 @@
|
||||
; RUN: llvm-as < %s | llc -mtriple=i386-apple-darwin | grep leal | not grep 16
|
||||
|
||||
%struct.CUMULATIVE_ARGS = type { i32, i32, i32, i32, i32, i32, i32 }
|
||||
%struct.bitmap_element = type { %struct.bitmap_element*, %struct.bitmap_element*, i32, [2 x i64] }
|
||||
%struct.bitmap_head_def = type { %struct.bitmap_element*, %struct.bitmap_element*, i32 }
|
||||
%struct.branch_path = type { %struct.rtx_def*, i32 }
|
||||
%struct.c_lang_decl = type <{ i8, [3 x i8] }>
|
||||
%struct.constant_descriptor = type { %struct.constant_descriptor*, i8*, %struct.rtx_def*, { x86_fp80 } }
|
||||
%struct.eh_region = type { %struct.eh_region*, %struct.eh_region*, %struct.eh_region*, i32, %struct.bitmap_head_def*, i32, { { %struct.eh_region*, %struct.eh_region*, %struct.eh_region*, %struct.rtx_def* } }, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def* }
|
||||
%struct.eh_status = type { %struct.eh_region*, %struct.eh_region**, %struct.eh_region*, %struct.eh_region*, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, i32, i32, %struct.varray_head_tag*, %struct.varray_head_tag*, %struct.varray_head_tag*, %struct.branch_path*, i32, i32, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def* }
|
||||
%struct.emit_status = type { i32, i32, %struct.rtx_def*, %struct.rtx_def*, %struct.tree_node*, %struct.sequence_stack*, i32, i32, i8*, i32, i8*, %struct.tree_node**, %struct.rtx_def** }
|
||||
%struct.equiv_table = type { %struct.rtx_def*, %struct.rtx_def* }
|
||||
%struct.expr_status = type { i32, i32, i32, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def* }
|
||||
%struct.function = type { %struct.eh_status*, %struct.stmt_status*, %struct.expr_status*, %struct.emit_status*, %struct.varasm_status*, i8*, %struct.tree_node*, %struct.function*, i32, i32, i32, i32, %struct.rtx_def*, %struct.CUMULATIVE_ARGS, %struct.rtx_def*, %struct.rtx_def*, i8*, %struct.initial_value_struct*, i32, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, i64, %struct.tree_node*, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, i32, %struct.rtx_def**, %struct.temp_slot*, i32, i32, i32, %struct.var_refs_queue*, i32, i32, i8*, %struct.tree_node*, %struct.rtx_def*, i32, i32, %struct.machine_function*, i32, i32, %struct.language_function*, %struct.rtx_def*, i8, i8, i8 }
|
||||
%struct.goto_fixup = type { %struct.goto_fixup*, %struct.rtx_def*, %struct.tree_node*, %struct.tree_node*, %struct.rtx_def*, i32, %struct.rtx_def*, %struct.tree_node* }
|
||||
%struct.initial_value_struct = type { i32, i32, %struct.equiv_table* }
|
||||
%struct.label_chain = type { %struct.label_chain*, %struct.tree_node* }
|
||||
%struct.lang_decl = type { %struct.c_lang_decl, %struct.tree_node* }
|
||||
%struct.language_function = type { %struct.stmt_tree_s, %struct.tree_node* }
|
||||
%struct.machine_function = type { [59 x [3 x %struct.rtx_def*]], i32, i32 }
|
||||
%struct.nesting = type { %struct.nesting*, %struct.nesting*, i32, %struct.rtx_def*, { { i32, %struct.rtx_def*, %struct.rtx_def*, %struct.nesting*, %struct.tree_node*, %struct.tree_node*, %struct.label_chain*, i32, i32, i32, i32, %struct.rtx_def*, %struct.tree_node** } } }
|
||||
%struct.pool_constant = type { %struct.constant_descriptor*, %struct.pool_constant*, %struct.pool_constant*, %struct.rtx_def*, i32, i32, i32, i64, i32 }
|
||||
%struct.rtunion = type { i64 }
|
||||
%struct.rtx_def = type { i16, i8, i8, [1 x %struct.rtunion] }
|
||||
%struct.sequence_stack = type { %struct.rtx_def*, %struct.rtx_def*, %struct.tree_node*, %struct.sequence_stack* }
|
||||
%struct.stmt_status = type { %struct.nesting*, %struct.nesting*, %struct.nesting*, %struct.nesting*, %struct.nesting*, %struct.nesting*, i32, i32, %struct.tree_node*, %struct.rtx_def*, i32, i8*, i32, %struct.goto_fixup* }
|
||||
%struct.stmt_tree_s = type { %struct.tree_node*, %struct.tree_node*, i8*, i32 }
|
||||
%struct.temp_slot = type { %struct.temp_slot*, %struct.rtx_def*, %struct.rtx_def*, i32, i64, %struct.tree_node*, %struct.tree_node*, i8, i8, i32, i32, i64, i64 }
|
||||
%struct.tree_common = type { %struct.tree_node*, %struct.tree_node*, i8, i8, i8, i8 }
|
||||
%struct.tree_decl = type { %struct.tree_common, i8*, i32, i32, %struct.tree_node*, i8, i8, i8, i8, i8, i8, %struct.rtunion, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, { %struct.function* }, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, i64, %struct.lang_decl* }
|
||||
%struct.tree_exp = type { %struct.tree_common, i32, [1 x %struct.tree_node*] }
|
||||
%struct.tree_node = type { %struct.tree_decl }
|
||||
%struct.var_refs_queue = type { %struct.rtx_def*, i32, i32, %struct.var_refs_queue* }
|
||||
%struct.varasm_status = type { %struct.constant_descriptor**, %struct.pool_constant**, %struct.pool_constant*, %struct.pool_constant*, i64, %struct.rtx_def* }
|
||||
%struct.varray_data = type { [1 x i64] }
|
||||
%struct.varray_head_tag = type { i32, i32, i32, i8*, %struct.varray_data }
|
||||
@lineno = internal global i32 0 ; <i32*> [#uses=1]
|
||||
@tree_code_length = internal global [256 x i32] zeroinitializer
|
||||
@llvm.used = appending global [1 x i8*] [ i8* bitcast (%struct.tree_node* (i32, ...)* @build_stmt to i8*) ], section "llvm.metadata" ; <[1 x i8*]*> [#uses=0]
|
||||
|
||||
define %struct.tree_node* @build_stmt(i32 %code, ...) nounwind {
|
||||
entry:
|
||||
%p = alloca i8* ; <i8**> [#uses=3]
|
||||
%p1 = bitcast i8** %p to i8* ; <i8*> [#uses=2]
|
||||
call void @llvm.va_start(i8* %p1)
|
||||
%0 = call fastcc %struct.tree_node* @make_node(i32 %code) nounwind ; <%struct.tree_node*> [#uses=2]
|
||||
%1 = getelementptr [256 x i32]* @tree_code_length, i32 0, i32 %code ; <i32*> [#uses=1]
|
||||
%2 = load i32* %1, align 4 ; <i32> [#uses=2]
|
||||
%3 = load i32* @lineno, align 4 ; <i32> [#uses=1]
|
||||
%4 = bitcast %struct.tree_node* %0 to %struct.tree_exp* ; <%struct.tree_exp*> [#uses=2]
|
||||
%5 = getelementptr %struct.tree_exp* %4, i32 0, i32 1 ; <i32*> [#uses=1]
|
||||
store i32 %3, i32* %5, align 4
|
||||
%6 = icmp sgt i32 %2, 0 ; <i1> [#uses=1]
|
||||
br i1 %6, label %bb, label %bb3
|
||||
|
||||
bb: ; preds = %bb, %entry
|
||||
%i.01 = phi i32 [ %indvar.next, %bb ], [ 0, %entry ] ; <i32> [#uses=2]
|
||||
%7 = load i8** %p, align 4 ; <i8*> [#uses=2]
|
||||
%8 = getelementptr i8* %7, i32 4 ; <i8*> [#uses=1]
|
||||
store i8* %8, i8** %p, align 4
|
||||
%9 = bitcast i8* %7 to %struct.tree_node** ; <%struct.tree_node**> [#uses=1]
|
||||
%10 = load %struct.tree_node** %9, align 4 ; <%struct.tree_node*> [#uses=1]
|
||||
%11 = getelementptr %struct.tree_exp* %4, i32 0, i32 2, i32 %i.01 ; <%struct.tree_node**> [#uses=1]
|
||||
store %struct.tree_node* %10, %struct.tree_node** %11, align 4
|
||||
%indvar.next = add i32 %i.01, 1 ; <i32> [#uses=2]
|
||||
%exitcond = icmp eq i32 %indvar.next, %2 ; <i1> [#uses=1]
|
||||
br i1 %exitcond, label %bb3, label %bb
|
||||
|
||||
bb3: ; preds = %bb, %entry
|
||||
call void @llvm.va_end(i8* %p1)
|
||||
ret %struct.tree_node* %0
|
||||
}
|
||||
|
||||
declare void @llvm.va_start(i8*) nounwind
|
||||
|
||||
declare void @llvm.va_end(i8*) nounwind
|
||||
|
||||
declare fastcc %struct.tree_node* @make_node(i32) nounwind
|
@ -1,14 +1,14 @@
|
||||
; RUN: llvm-as < %s | llc -march=x86 -relocation-model=static | grep lea | count 1
|
||||
; RUN: llvm-as < %s | llc -march=x86 -relocation-model=static | not grep lea
|
||||
; RUN: llvm-as < %s | llc -march=x86-64 | not grep lea
|
||||
|
||||
; For x86 there's an lea above the loop. In both cases, there shouldn't
|
||||
; be any lea instructions inside the loop.
|
||||
; _P should be sunk into the loop and folded into the address mode. There
|
||||
; shouldn't be any lea instructions inside the loop.
|
||||
|
||||
@B = external global [1000 x i8], align 32
|
||||
@A = external global [1000 x i8], align 32
|
||||
@P = external global [1000 x i8], align 32
|
||||
|
||||
define void @foo(i32 %m, i32 %p) {
|
||||
define void @foo(i32 %m, i32 %p) nounwind {
|
||||
entry:
|
||||
%tmp1 = icmp sgt i32 %m, 0
|
||||
br i1 %tmp1, label %bb, label %return
|
||||
|
Loading…
x
Reference in New Issue
Block a user