Teach LSR sink to sink the immediate portion of the common expression back into uses if they fit in address modes of all the uses.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65215 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Evan Cheng 2009-02-21 02:06:47 +00:00
parent 5a45d76c25
commit d9fb712403
5 changed files with 199 additions and 40 deletions

View File

@ -26,19 +26,19 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
#include <set>
using namespace llvm;
STATISTIC(NumReduced , "Number of GEPs strength reduced");
@ -46,6 +46,7 @@ STATISTIC(NumInserted, "Number of PHIs inserted");
STATISTIC(NumVariable, "Number of PHIs with variable strides");
STATISTIC(NumEliminated, "Number of strides eliminated");
STATISTIC(NumShadow, "Number of Shadow IVs optimized");
STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses");
static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
cl::init(false),
@ -954,21 +955,17 @@ static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
/// that can fit into the immediate field of instructions in the target.
/// Accumulate these immediate values into the Imm value.
static void MoveImmediateValues(const TargetLowering *TLI,
Instruction *User,
const Type *UseTy,
SCEVHandle &Val, SCEVHandle &Imm,
bool isAddress, Loop *L,
ScalarEvolution *SE) {
const Type *UseTy = User->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(User))
UseTy = SI->getOperand(0)->getType();
if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
std::vector<SCEVHandle> NewOps;
NewOps.reserve(SAE->getNumOperands());
for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
SCEVHandle NewOp = SAE->getOperand(i);
MoveImmediateValues(TLI, User, NewOp, Imm, isAddress, L, SE);
MoveImmediateValues(TLI, UseTy, NewOp, Imm, isAddress, L, SE);
if (!NewOp->isLoopInvariant(L)) {
// If this is a loop-variant expression, it must stay in the immediate
@ -987,7 +984,7 @@ static void MoveImmediateValues(const TargetLowering *TLI,
} else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
// Try to pull immediates out of the start value of nested addrec's.
SCEVHandle Start = SARE->getStart();
MoveImmediateValues(TLI, User, Start, Imm, isAddress, L, SE);
MoveImmediateValues(TLI, UseTy, Start, Imm, isAddress, L, SE);
if (Start != SARE->getStart()) {
std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
@ -1002,7 +999,7 @@ static void MoveImmediateValues(const TargetLowering *TLI,
SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
SCEVHandle NewOp = SME->getOperand(1);
MoveImmediateValues(TLI, User, NewOp, SubImm, isAddress, L, SE);
MoveImmediateValues(TLI, UseTy, NewOp, SubImm, isAddress, L, SE);
// If we extracted something out of the subexpressions, see if we can
// simplify this!
@ -1034,6 +1031,16 @@ static void MoveImmediateValues(const TargetLowering *TLI,
// Otherwise, no immediates to move.
}
static void MoveImmediateValues(const TargetLowering *TLI,
Instruction *User,
SCEVHandle &Val, SCEVHandle &Imm,
bool isAddress, Loop *L,
ScalarEvolution *SE) {
const Type *UseTy = User->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(User))
UseTy = SI->getOperand(0)->getType();
MoveImmediateValues(TLI, UseTy, Val, Imm, isAddress, L, SE);
}
/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
/// added together. This is used to reassociate common addition subexprs
@ -1450,6 +1457,9 @@ SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
UsersToProcess[i].Base =
SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
} else {
// Not all uses are outside the loop.
AllUsesAreOutsideLoop = false;
// Addressing modes can be folded into loads and stores. Be careful that
// the store is through the expression, not of the expression though.
bool isPHI = false;
@ -1460,9 +1470,6 @@ SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
++NumPHI;
}
// Not all uses are outside the loop.
AllUsesAreOutsideLoop = false;
if (isAddress)
HasAddress = true;
@ -1475,7 +1482,7 @@ SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
}
}
// If one of the use if a PHI node and all other uses are addresses, still
// If one of the use is a PHI node and all other uses are addresses, still
// allow iv reuse. Essentially we are trading one constant multiplication
// for one fewer iv.
if (NumPHI > 1)
@ -1754,6 +1761,28 @@ LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
"commonbase", PreInsertPt);
}
static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
const Type *ReplacedTy,
std::vector<BasedUser> &UsersToProcess,
const TargetLowering *TLI) {
SmallVector<Instruction*, 16> AddrModeInsts;
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
if (UsersToProcess[i].isUseOfPostIncrementedValue)
continue;
ExtAddrMode AddrMode =
AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
ReplacedTy, UsersToProcess[i].Inst,
AddrModeInsts, *TLI);
if (GV && GV != AddrMode.BaseGV)
return false;
if (Offset && !AddrMode.BaseOffs)
// FIXME: How to accurate check it's immediate offset is folded.
return false;
AddrModeInsts.clear();
}
return true;
}
/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
/// stride of IV. All of the users may have different starting values, and this
/// may not be the only stride (we know it is if isOnlyStride is true).
@ -1797,6 +1826,41 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
const Type *ReplacedTy = CommonExprs->getType();
// If all uses are addresses, consider sinking the immediate part of the
// common expression back into uses if they can fit in the immediate fields.
if (HaveCommonExprs && AllUsesAreAddresses) {
SCEVHandle NewCommon = CommonExprs;
SCEVHandle Imm = SE->getIntegerSCEV(0, ReplacedTy);
MoveImmediateValues(TLI, ReplacedTy, NewCommon, Imm, true, L, SE);
if (!Imm->isZero()) {
bool DoSink = true;
// If the immediate part of the common expression is a GV, check if it's
// possible to fold it into the target addressing mode.
GlobalValue *GV = 0;
if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm)) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
if (CE->getOpcode() == Instruction::PtrToInt)
GV = dyn_cast<GlobalValue>(CE->getOperand(0));
}
int64_t Offset = 0;
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
Offset = SC->getValue()->getSExtValue();
if (GV || Offset)
DoSink = IsImmFoldedIntoAddrMode(GV, Offset, ReplacedTy,
UsersToProcess, TLI);
if (DoSink) {
DOUT << " Sinking " << *Imm << " back down into uses\n";
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
CommonExprs = NewCommon;
HaveCommonExprs = !CommonExprs->isZero();
++NumImmSunk;
}
}
}
// Now that we know what we need to do, insert the PHI node itself.
//
DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
@ -2556,7 +2620,8 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
bool HasOneStride = IVUsesByStride.size() == 1;
#ifndef NDEBUG
DOUT << "\nLSR on ";
DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
<< "\" ";
DEBUG(L->dump());
#endif

View File

@ -4,29 +4,43 @@
%struct.bnode = type { i16, double, [3 x double], i32, i32, [3 x double], [3 x double], [3 x double], double, %struct.bnode*, %struct.bnode* }
%struct.node = type { i16, double, [3 x double], i32, i32 }
define fastcc void @old_main() {
define i32 @main(i32 %argc, i8** nocapture %argv) nounwind {
entry:
%tmp44 = malloc %struct.anon ; <%struct.anon*> [#uses=2]
store double 4.000000e+00, double* null, align 4
br label %bb41
%0 = malloc %struct.anon ; <%struct.anon*> [#uses=2]
%1 = getelementptr %struct.anon* %0, i32 0, i32 2 ; <%struct.node**> [#uses=1]
br label %bb14.i
bb41: ; preds = %uniform_testdata.exit, %entry
%i.0110 = phi i32 [ 0, %entry ], [ %tmp48, %uniform_testdata.exit ] ; <i32> [#uses=2]
%tmp48 = add i32 %i.0110, 1 ; <i32> [#uses=1]
br i1 false, label %uniform_testdata.exit, label %bb33.preheader.i
bb14.i: ; preds = %bb14.i, %entry
%i8.0.reg2mem.0.i = phi i32 [ 0, %entry ], [ %2, %bb14.i ] ; <i32> [#uses=1]
%2 = add i32 %i8.0.reg2mem.0.i, 1 ; <i32> [#uses=2]
%exitcond74.i = icmp eq i32 %2, 32 ; <i1> [#uses=1]
br i1 %exitcond74.i, label %bb32.i, label %bb14.i
bb33.preheader.i: ; preds = %bb41
ret void
bb32.i: ; preds = %bb32.i, %bb14.i
%tmp.0.reg2mem.0.i = phi i32 [ %indvar.next63.i, %bb32.i ], [ 0, %bb14.i ] ; <i32> [#uses=1]
%indvar.next63.i = add i32 %tmp.0.reg2mem.0.i, 1 ; <i32> [#uses=2]
%exitcond64.i = icmp eq i32 %indvar.next63.i, 64 ; <i1> [#uses=1]
br i1 %exitcond64.i, label %bb47.loopexit.i, label %bb32.i
uniform_testdata.exit: ; preds = %bb41
%tmp57 = getelementptr %struct.anon* %tmp44, i32 0, i32 3, i32 %i.0110 ; <%struct.bnode**> [#uses=1]
store %struct.bnode* null, %struct.bnode** %tmp57, align 4
br i1 false, label %bb154, label %bb41
bb.i.i: ; preds = %bb47.loopexit.i
unreachable
bb154: ; preds = %bb154, %uniform_testdata.exit
br i1 false, label %bb166, label %bb154
stepsystem.exit.i: ; preds = %bb47.loopexit.i
store %struct.node* null, %struct.node** %1, align 4
br label %bb.i6.i
bb166: ; preds = %bb154
%tmp169 = getelementptr %struct.anon* %tmp44, i32 0, i32 3, i32 0 ; <%struct.bnode**> [#uses=0]
ret void
bb.i6.i: ; preds = %bb.i6.i, %stepsystem.exit.i
%tmp.0.i.i = add i32 0, -1 ; <i32> [#uses=1]
%3 = icmp slt i32 %tmp.0.i.i, 0 ; <i1> [#uses=1]
br i1 %3, label %bb107.i.i, label %bb.i6.i
bb107.i.i: ; preds = %bb107.i.i, %bb.i6.i
%q_addr.0.i.i.in = phi %struct.bnode** [ null, %bb107.i.i ], [ %4, %bb.i6.i ] ; <%struct.bnode**> [#uses=1]
%q_addr.0.i.i = load %struct.bnode** %q_addr.0.i.i.in ; <%struct.bnode*> [#uses=0]
br label %bb107.i.i
bb47.loopexit.i: ; preds = %bb32.i
%4 = getelementptr %struct.anon* %0, i32 0, i32 4, i32 0 ; <%struct.bnode**> [#uses=1]
%5 = icmp eq %struct.node* null, null ; <i1> [#uses=1]
br i1 %5, label %stepsystem.exit.i, label %bb.i.i
}

View File

@ -1,8 +1,10 @@
; RUN: llvm-as < %s | llc -march=x86 -relocation-model=pic | \
; RUN: grep {, 4} | count 1
; RUN: llvm-as < %s | llc -march=x86 | not grep lea
;
; Make sure the common loop invariant A is hoisted up to preheader,
; since too many registers are needed to subsume it into the addressing modes.
; It's safe to sink A in when it's not pic.
@A = global [16 x [16 x i32]] zeroinitializer, align 32 ; <[16 x [16 x i32]]*> [#uses=2]

View File

@ -0,0 +1,78 @@
; RUN: llvm-as < %s | llc -mtriple=i386-apple-darwin | grep leal | not grep 16
%struct.CUMULATIVE_ARGS = type { i32, i32, i32, i32, i32, i32, i32 }
%struct.bitmap_element = type { %struct.bitmap_element*, %struct.bitmap_element*, i32, [2 x i64] }
%struct.bitmap_head_def = type { %struct.bitmap_element*, %struct.bitmap_element*, i32 }
%struct.branch_path = type { %struct.rtx_def*, i32 }
%struct.c_lang_decl = type <{ i8, [3 x i8] }>
%struct.constant_descriptor = type { %struct.constant_descriptor*, i8*, %struct.rtx_def*, { x86_fp80 } }
%struct.eh_region = type { %struct.eh_region*, %struct.eh_region*, %struct.eh_region*, i32, %struct.bitmap_head_def*, i32, { { %struct.eh_region*, %struct.eh_region*, %struct.eh_region*, %struct.rtx_def* } }, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def* }
%struct.eh_status = type { %struct.eh_region*, %struct.eh_region**, %struct.eh_region*, %struct.eh_region*, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, i32, i32, %struct.varray_head_tag*, %struct.varray_head_tag*, %struct.varray_head_tag*, %struct.branch_path*, i32, i32, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def* }
%struct.emit_status = type { i32, i32, %struct.rtx_def*, %struct.rtx_def*, %struct.tree_node*, %struct.sequence_stack*, i32, i32, i8*, i32, i8*, %struct.tree_node**, %struct.rtx_def** }
%struct.equiv_table = type { %struct.rtx_def*, %struct.rtx_def* }
%struct.expr_status = type { i32, i32, i32, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def* }
%struct.function = type { %struct.eh_status*, %struct.stmt_status*, %struct.expr_status*, %struct.emit_status*, %struct.varasm_status*, i8*, %struct.tree_node*, %struct.function*, i32, i32, i32, i32, %struct.rtx_def*, %struct.CUMULATIVE_ARGS, %struct.rtx_def*, %struct.rtx_def*, i8*, %struct.initial_value_struct*, i32, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, i64, %struct.tree_node*, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, i32, %struct.rtx_def**, %struct.temp_slot*, i32, i32, i32, %struct.var_refs_queue*, i32, i32, i8*, %struct.tree_node*, %struct.rtx_def*, i32, i32, %struct.machine_function*, i32, i32, %struct.language_function*, %struct.rtx_def*, i8, i8, i8 }
%struct.goto_fixup = type { %struct.goto_fixup*, %struct.rtx_def*, %struct.tree_node*, %struct.tree_node*, %struct.rtx_def*, i32, %struct.rtx_def*, %struct.tree_node* }
%struct.initial_value_struct = type { i32, i32, %struct.equiv_table* }
%struct.label_chain = type { %struct.label_chain*, %struct.tree_node* }
%struct.lang_decl = type { %struct.c_lang_decl, %struct.tree_node* }
%struct.language_function = type { %struct.stmt_tree_s, %struct.tree_node* }
%struct.machine_function = type { [59 x [3 x %struct.rtx_def*]], i32, i32 }
%struct.nesting = type { %struct.nesting*, %struct.nesting*, i32, %struct.rtx_def*, { { i32, %struct.rtx_def*, %struct.rtx_def*, %struct.nesting*, %struct.tree_node*, %struct.tree_node*, %struct.label_chain*, i32, i32, i32, i32, %struct.rtx_def*, %struct.tree_node** } } }
%struct.pool_constant = type { %struct.constant_descriptor*, %struct.pool_constant*, %struct.pool_constant*, %struct.rtx_def*, i32, i32, i32, i64, i32 }
%struct.rtunion = type { i64 }
%struct.rtx_def = type { i16, i8, i8, [1 x %struct.rtunion] }
%struct.sequence_stack = type { %struct.rtx_def*, %struct.rtx_def*, %struct.tree_node*, %struct.sequence_stack* }
%struct.stmt_status = type { %struct.nesting*, %struct.nesting*, %struct.nesting*, %struct.nesting*, %struct.nesting*, %struct.nesting*, i32, i32, %struct.tree_node*, %struct.rtx_def*, i32, i8*, i32, %struct.goto_fixup* }
%struct.stmt_tree_s = type { %struct.tree_node*, %struct.tree_node*, i8*, i32 }
%struct.temp_slot = type { %struct.temp_slot*, %struct.rtx_def*, %struct.rtx_def*, i32, i64, %struct.tree_node*, %struct.tree_node*, i8, i8, i32, i32, i64, i64 }
%struct.tree_common = type { %struct.tree_node*, %struct.tree_node*, i8, i8, i8, i8 }
%struct.tree_decl = type { %struct.tree_common, i8*, i32, i32, %struct.tree_node*, i8, i8, i8, i8, i8, i8, %struct.rtunion, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, %struct.rtx_def*, %struct.rtx_def*, { %struct.function* }, %struct.tree_node*, %struct.tree_node*, %struct.tree_node*, i64, %struct.lang_decl* }
%struct.tree_exp = type { %struct.tree_common, i32, [1 x %struct.tree_node*] }
%struct.tree_node = type { %struct.tree_decl }
%struct.var_refs_queue = type { %struct.rtx_def*, i32, i32, %struct.var_refs_queue* }
%struct.varasm_status = type { %struct.constant_descriptor**, %struct.pool_constant**, %struct.pool_constant*, %struct.pool_constant*, i64, %struct.rtx_def* }
%struct.varray_data = type { [1 x i64] }
%struct.varray_head_tag = type { i32, i32, i32, i8*, %struct.varray_data }
@lineno = internal global i32 0 ; <i32*> [#uses=1]
@tree_code_length = internal global [256 x i32] zeroinitializer
@llvm.used = appending global [1 x i8*] [ i8* bitcast (%struct.tree_node* (i32, ...)* @build_stmt to i8*) ], section "llvm.metadata" ; <[1 x i8*]*> [#uses=0]
define %struct.tree_node* @build_stmt(i32 %code, ...) nounwind {
entry:
%p = alloca i8* ; <i8**> [#uses=3]
%p1 = bitcast i8** %p to i8* ; <i8*> [#uses=2]
call void @llvm.va_start(i8* %p1)
%0 = call fastcc %struct.tree_node* @make_node(i32 %code) nounwind ; <%struct.tree_node*> [#uses=2]
%1 = getelementptr [256 x i32]* @tree_code_length, i32 0, i32 %code ; <i32*> [#uses=1]
%2 = load i32* %1, align 4 ; <i32> [#uses=2]
%3 = load i32* @lineno, align 4 ; <i32> [#uses=1]
%4 = bitcast %struct.tree_node* %0 to %struct.tree_exp* ; <%struct.tree_exp*> [#uses=2]
%5 = getelementptr %struct.tree_exp* %4, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %3, i32* %5, align 4
%6 = icmp sgt i32 %2, 0 ; <i1> [#uses=1]
br i1 %6, label %bb, label %bb3
bb: ; preds = %bb, %entry
%i.01 = phi i32 [ %indvar.next, %bb ], [ 0, %entry ] ; <i32> [#uses=2]
%7 = load i8** %p, align 4 ; <i8*> [#uses=2]
%8 = getelementptr i8* %7, i32 4 ; <i8*> [#uses=1]
store i8* %8, i8** %p, align 4
%9 = bitcast i8* %7 to %struct.tree_node** ; <%struct.tree_node**> [#uses=1]
%10 = load %struct.tree_node** %9, align 4 ; <%struct.tree_node*> [#uses=1]
%11 = getelementptr %struct.tree_exp* %4, i32 0, i32 2, i32 %i.01 ; <%struct.tree_node**> [#uses=1]
store %struct.tree_node* %10, %struct.tree_node** %11, align 4
%indvar.next = add i32 %i.01, 1 ; <i32> [#uses=2]
%exitcond = icmp eq i32 %indvar.next, %2 ; <i1> [#uses=1]
br i1 %exitcond, label %bb3, label %bb
bb3: ; preds = %bb, %entry
call void @llvm.va_end(i8* %p1)
ret %struct.tree_node* %0
}
declare void @llvm.va_start(i8*) nounwind
declare void @llvm.va_end(i8*) nounwind
declare fastcc %struct.tree_node* @make_node(i32) nounwind

View File

@ -1,14 +1,14 @@
; RUN: llvm-as < %s | llc -march=x86 -relocation-model=static | grep lea | count 1
; RUN: llvm-as < %s | llc -march=x86 -relocation-model=static | not grep lea
; RUN: llvm-as < %s | llc -march=x86-64 | not grep lea
; For x86 there's an lea above the loop. In both cases, there shouldn't
; be any lea instructions inside the loop.
; _P should be sunk into the loop and folded into the address mode. There
; shouldn't be any lea instructions inside the loop.
@B = external global [1000 x i8], align 32
@A = external global [1000 x i8], align 32
@P = external global [1000 x i8], align 32
define void @foo(i32 %m, i32 %p) {
define void @foo(i32 %m, i32 %p) nounwind {
entry:
%tmp1 = icmp sgt i32 %m, 0
br i1 %tmp1, label %bb, label %return