Remove -enable-iv-rewrite, which has been unsupported since 3.0.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153260 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrew Trick 2012-03-22 17:10:11 +00:00
parent 0c0a3effde
commit db0d666578

View File

@ -33,7 +33,6 @@
#include "llvm/LLVMContext.h" #include "llvm/LLVMContext.h"
#include "llvm/Type.h" #include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopPass.h"
@ -50,18 +49,12 @@
#include "llvm/ADT/Statistic.h" #include "llvm/ADT/Statistic.h"
using namespace llvm; using namespace llvm;
STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumWidened , "Number of indvars widened"); STATISTIC(NumWidened , "Number of indvars widened");
STATISTIC(NumInserted , "Number of canonical indvars added");
STATISTIC(NumReplaced , "Number of exit values replaced"); STATISTIC(NumReplaced , "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced");
STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
static cl::opt<bool> EnableIVRewrite(
"enable-iv-rewrite", cl::Hidden,
cl::desc("Enable canonical induction variable rewriting"));
// Trip count verification can be enabled by default under NDEBUG if we // Trip count verification can be enabled by default under NDEBUG if we
// implement a strong expression equivalence checker in SCEV. Until then, we // implement a strong expression equivalence checker in SCEV. Until then, we
// use the verify-indvars flag, which may assert in some cases. // use the verify-indvars flag, which may assert in some cases.
@ -71,7 +64,6 @@ static cl::opt<bool> VerifyIndvars(
namespace { namespace {
class IndVarSimplify : public LoopPass { class IndVarSimplify : public LoopPass {
IVUsers *IU;
LoopInfo *LI; LoopInfo *LI;
ScalarEvolution *SE; ScalarEvolution *SE;
DominatorTree *DT; DominatorTree *DT;
@ -82,7 +74,7 @@ namespace {
public: public:
static char ID; // Pass identification, replacement for typeid static char ID; // Pass identification, replacement for typeid
IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
Changed(false) { Changed(false) {
initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
} }
@ -95,13 +87,9 @@ namespace {
AU.addRequired<ScalarEvolution>(); AU.addRequired<ScalarEvolution>();
AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID); AU.addRequiredID(LCSSAID);
if (EnableIVRewrite)
AU.addRequired<IVUsers>();
AU.addPreserved<ScalarEvolution>(); AU.addPreserved<ScalarEvolution>();
AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID); AU.addPreservedID(LCSSAID);
if (EnableIVRewrite)
AU.addPreserved<IVUsers>();
AU.setPreservesCFG(); AU.setPreservesCFG();
} }
@ -119,8 +107,6 @@ namespace {
void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
PHINode *IndVar, SCEVExpander &Rewriter); PHINode *IndVar, SCEVExpander &Rewriter);
@ -136,7 +122,6 @@ INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA) INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(IVUsers)
INITIALIZE_PASS_END(IndVarSimplify, "indvars", INITIALIZE_PASS_END(IndVarSimplify, "indvars",
"Induction Variable Simplification", false, false) "Induction Variable Simplification", false, false)
@ -448,13 +433,6 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
PN->replaceAllUsesWith(Conv); PN->replaceAllUsesWith(Conv);
RecursivelyDeleteTriviallyDeadInstructions(PN); RecursivelyDeleteTriviallyDeadInstructions(PN);
} }
// Add a new IVUsers entry for the newly-created integer PHI.
if (IU) {
SmallPtrSet<Loop*, 16> SimplifiedLoopNests;
IU->AddUsersIfInteresting(NewPHI, SimplifiedLoopNests);
}
Changed = true; Changed = true;
} }
@ -599,124 +577,6 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Rewriter.clearInsertPoint(); Rewriter.clearInsertPoint();
} }
//===----------------------------------------------------------------------===//
// Rewrite IV users based on a canonical IV.
// Only for use with -enable-iv-rewrite.
//===----------------------------------------------------------------------===//
/// FIXME: It is an extremely bad idea to indvar substitute anything more
/// complex than affine induction variables. Doing so will put expensive
/// polynomial evaluations inside of the loop, and the str reduction pass
/// currently can only reduce affine polynomials. For now just disable
/// indvar subst on anything more complex than an affine addrec, unless
/// it can be expanded to a trivial value.
static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
// Loop-invariant values are safe.
if (SE->isLoopInvariant(S, L)) return true;
// Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
// to transform them into efficient code.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
return AR->isAffine();
// An add is safe it all its operands are safe.
if (const SCEVCommutativeExpr *Commutative
= dyn_cast<SCEVCommutativeExpr>(S)) {
for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
E = Commutative->op_end(); I != E; ++I)
if (!isSafe(*I, L, SE)) return false;
return true;
}
// A cast is safe if its operand is.
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
return isSafe(C->getOperand(), L, SE);
// A udiv is safe if its operands are.
if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
return isSafe(UD->getLHS(), L, SE) &&
isSafe(UD->getRHS(), L, SE);
// SCEVUnknown is always safe.
if (isa<SCEVUnknown>(S))
return true;
// Nothing else is safe.
return false;
}
void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
// Rewrite all induction variable expressions in terms of the canonical
// induction variable.
//
// If there were induction variables of other sizes or offsets, manually
// add the offsets to the primary induction variable and cast, avoiding
// the need for the code evaluation methods to insert induction variables
// of different sizes.
for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
Value *Op = UI->getOperandValToReplace();
Type *UseTy = Op->getType();
Instruction *User = UI->getUser();
// Compute the final addrec to expand into code.
const SCEV *AR = IU->getReplacementExpr(*UI);
// Evaluate the expression out of the loop, if possible.
if (!L->contains(UI->getUser())) {
const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
if (SE->isLoopInvariant(ExitVal, L))
AR = ExitVal;
}
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
if (!isSafe(AR, L, SE))
continue;
// Determine the insertion point for this user. By default, insert
// immediately before the user. The SCEVExpander class will automatically
// hoist loop invariants out of the loop. For PHI nodes, there may be
// multiple uses, so compute the nearest common dominator for the
// incoming blocks.
Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
// Now expand it into actual Instructions and patch it into place.
Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
<< " into = " << *NewVal << "\n");
if (!isValidRewrite(Op, NewVal)) {
DeadInsts.push_back(NewVal);
continue;
}
// Inform ScalarEvolution that this value is changing. The change doesn't
// affect its value, but it does potentially affect which use lists the
// value will be on after the replacement, which affects ScalarEvolution's
// ability to walk use lists and drop dangling pointers when a value is
// deleted.
SE->forgetValue(User);
// Patch the new value into place.
if (Op->hasName())
NewVal->takeName(Op);
if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
NewValI->setDebugLoc(User->getDebugLoc());
User->replaceUsesOfWith(Op, NewVal);
UI->setOperandValToReplace(NewVal);
++NumRemoved;
Changed = true;
// The old value may be dead now.
DeadInsts.push_back(Op);
}
}
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// IV Widening - Extend the width of an IV to cover its widest uses. // IV Widening - Extend the width of an IV to cover its widest uses.
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -1262,9 +1122,6 @@ static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
} }
} }
if (EnableIVRewrite)
return false;
// Recurse past add expressions, which commonly occur in the // Recurse past add expressions, which commonly occur in the
// BackedgeTakenCount. They may already exist in program code, and if not, // BackedgeTakenCount. They may already exist in program code, and if not,
// they are not too expensive rematerialize. // they are not too expensive rematerialize.
@ -1321,36 +1178,6 @@ static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
return true; return true;
} }
/// getBackedgeIVType - Get the widest type used by the loop test after peeking
/// through Truncs.
///
/// TODO: Unnecessary when ForceLFTR is removed.
static Type *getBackedgeIVType(Loop *L) {
if (!L->getExitingBlock())
return 0;
// Can't rewrite non-branch yet.
BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
if (!BI)
return 0;
ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
if (!Cond)
return 0;
Type *Ty = 0;
for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
OI != OE; ++OI) {
assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
if (!Trunc)
continue;
return Trunc->getSrcTy();
}
return Ty;
}
/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
/// invariant value to the phi. /// invariant value to the phi.
static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
@ -1619,8 +1446,7 @@ LinearFunctionTestReplace(Loop *L,
// LFTR can ignore IV overflow and truncate to the width of // LFTR can ignore IV overflow and truncate to the width of
// BECount. This avoids materializing the add(zext(add)) expression. // BECount. This avoids materializing the add(zext(add)) expression.
Type *CntTy = !EnableIVRewrite ? Type *CntTy = BackedgeTakenCount->getType();
BackedgeTakenCount->getType() : IndVar->getType();
const SCEV *IVCount = BackedgeTakenCount; const SCEV *IVCount = BackedgeTakenCount;
@ -1805,8 +1631,6 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
if (!L->isLoopSimplifyForm()) if (!L->isLoopSimplifyForm())
return false; return false;
if (EnableIVRewrite)
IU = &getAnalysis<IVUsers>();
LI = &getAnalysis<LoopInfo>(); LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>(); SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTree>(); DT = &getAnalysis<DominatorTree>();
@ -1833,10 +1657,8 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// attempt to avoid evaluating SCEVs for sign/zero extend operations until // attempt to avoid evaluating SCEVs for sign/zero extend operations until
// other expressions involving loop IVs have been evaluated. This helps SCEV // other expressions involving loop IVs have been evaluated. This helps SCEV
// set no-wrap flags before normalizing sign/zero extension. // set no-wrap flags before normalizing sign/zero extension.
if (!EnableIVRewrite) { Rewriter.disableCanonicalMode();
Rewriter.disableCanonicalMode(); SimplifyAndExtend(L, Rewriter, LPM);
SimplifyAndExtend(L, Rewriter, LPM);
}
// Check to see if this loop has a computable loop-invariant execution count. // Check to see if this loop has a computable loop-invariant execution count.
// If so, this means that we can compute the final value of any expressions // If so, this means that we can compute the final value of any expressions
@ -1847,83 +1669,17 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
RewriteLoopExitValues(L, Rewriter); RewriteLoopExitValues(L, Rewriter);
// Eliminate redundant IV users.
if (EnableIVRewrite)
Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
// Eliminate redundant IV cycles. // Eliminate redundant IV cycles.
if (!EnableIVRewrite) NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
// Compute the type of the largest recurrence expression, and decide whether // Compute the type of the largest recurrence expression, and decide whether
// a canonical induction variable should be inserted. // a canonical induction variable should be inserted.
Type *LargestType = 0;
bool NeedCannIV = false;
bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
if (EnableIVRewrite && ExpandBECount) {
// If we have a known trip count and a single exit block, we'll be
// rewriting the loop exit test condition below, which requires a
// canonical induction variable.
NeedCannIV = true;
Type *Ty = BackedgeTakenCount->getType();
if (!EnableIVRewrite) {
// In this mode, SimplifyIVUsers may have already widened the IV used by
// the backedge test and inserted a Trunc on the compare's operand. Get
// the wider type to avoid creating a redundant narrow IV only used by the
// loop test.
LargestType = getBackedgeIVType(L);
}
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
SE->getTypeSizeInBits(LargestType))
LargestType = SE->getEffectiveSCEVType(Ty);
}
if (EnableIVRewrite) {
for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
NeedCannIV = true;
Type *Ty =
SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
SE->getTypeSizeInBits(LargestType))
LargestType = Ty;
}
}
// Now that we know the largest of the induction variable expressions // Now that we know the largest of the induction variable expressions
// in this loop, insert a canonical induction variable of the largest size. // in this loop, insert a canonical induction variable of the largest size.
PHINode *IndVar = 0; PHINode *IndVar = 0;
if (NeedCannIV) { if (ExpandBECount && needsLFTR(L, DT)) {
// Check to see if the loop already has any canonical-looking induction
// variables. If any are present and wider than the planned canonical
// induction variable, temporarily remove them, so that the Rewriter
// doesn't attempt to reuse them.
SmallVector<PHINode *, 2> OldCannIVs;
while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
if (SE->getTypeSizeInBits(OldCannIV->getType()) >
SE->getTypeSizeInBits(LargestType))
OldCannIV->removeFromParent();
else
break;
OldCannIVs.push_back(OldCannIV);
}
IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
++NumInserted;
Changed = true;
DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
// Now that the official induction variable is established, reinsert
// any old canonical-looking variables after it so that the IR remains
// consistent. They will be deleted as part of the dead-PHI deletion at
// the end of the pass.
while (!OldCannIVs.empty()) {
PHINode *OldCannIV = OldCannIVs.pop_back_val();
OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
}
}
else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
} }
// If we have a trip count expression, rewrite the loop's exit condition // If we have a trip count expression, rewrite the loop's exit condition
@ -1943,9 +1699,6 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
NewICmp = NewICmp =
LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
} }
// Rewrite IV-derived expressions.
if (EnableIVRewrite)
RewriteIVExpressions(L, Rewriter);
// Clear the rewriter cache, because values that are in the rewriter's cache // Clear the rewriter cache, because values that are in the rewriter's cache
// can be deleted in the loop below, causing the AssertingVH in the cache to // can be deleted in the loop below, causing the AssertingVH in the cache to
@ -1965,16 +1718,6 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// loop may be sunk below the loop to reduce register pressure. // loop may be sunk below the loop to reduce register pressure.
SinkUnusedInvariants(L); SinkUnusedInvariants(L);
// For completeness, inform IVUsers of the IV use in the newly-created
// loop exit test instruction.
if (IU && NewICmp) {
ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
if (NewICmpInst) {
SmallPtrSet<Loop*, 16> SimplifiedLoopNests;
IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)),
SimplifiedLoopNests);
}
}
// Clean up dead instructions. // Clean up dead instructions.
Changed |= DeleteDeadPHIs(L->getHeader()); Changed |= DeleteDeadPHIs(L->getHeader());
// Check a post-condition. // Check a post-condition.
@ -1984,8 +1727,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// Verify that LFTR, and any other change have not interfered with SCEV's // Verify that LFTR, and any other change have not interfered with SCEV's
// ability to compute trip count. // ability to compute trip count.
#ifndef NDEBUG #ifndef NDEBUG
if (!EnableIVRewrite && VerifyIndvars && if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
SE->forgetLoop(L); SE->forgetLoop(L);
const SCEV *NewBECount = SE->getBackedgeTakenCount(L); const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <