mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-23 17:24:48 +00:00
Fix PR2088. Use modulo linear equation solver to compute loop iteration
count. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53810 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -78,6 +78,8 @@
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
#include "llvm/Support/Streams.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
//TMP:
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include <ostream>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
@ -2461,6 +2463,53 @@ SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
|
||||
return UnknownValue;
|
||||
}
|
||||
|
||||
/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
|
||||
/// following equation:
|
||||
///
|
||||
/// A * X = B (mod N)
|
||||
///
|
||||
/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
|
||||
/// A and B isn't important.
|
||||
///
|
||||
/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
|
||||
static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
|
||||
ScalarEvolution &SE) {
|
||||
uint32_t BW = A.getBitWidth();
|
||||
assert(BW == B.getBitWidth() && "Bit widths must be the same.");
|
||||
assert(A != 0 && "A must be non-zero.");
|
||||
|
||||
// 1. D = gcd(A, N)
|
||||
//
|
||||
// The gcd of A and N may have only one prime factor: 2. The number of
|
||||
// trailing zeros in A is its multiplicity
|
||||
uint32_t Mult2 = A.countTrailingZeros();
|
||||
// D = 2^Mult2
|
||||
|
||||
// 2. Check if B is divisible by D.
|
||||
//
|
||||
// B is divisible by D if and only if the multiplicity of prime factor 2 for B
|
||||
// is not less than multiplicity of this prime factor for D.
|
||||
if (B.countTrailingZeros() < Mult2)
|
||||
return new SCEVCouldNotCompute();
|
||||
|
||||
// 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
|
||||
// modulo (N / D).
|
||||
//
|
||||
// (N / D) may need BW+1 bits in its representation. Hence, we'll use this
|
||||
// bit width during computations.
|
||||
APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
|
||||
APInt Mod(BW + 1, 0);
|
||||
Mod.set(BW - Mult2); // Mod = N / D
|
||||
APInt I = AD.multiplicativeInverse(Mod);
|
||||
|
||||
// 4. Compute the minimum unsigned root of the equation:
|
||||
// I * (B / D) mod (N / D)
|
||||
APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
|
||||
|
||||
// The result is guaranteed to be less than 2^BW so we may truncate it to BW
|
||||
// bits.
|
||||
return SE.getConstant(Result.trunc(BW));
|
||||
}
|
||||
|
||||
/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
|
||||
/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
|
||||
@ -2533,36 +2582,36 @@ SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
|
||||
return UnknownValue;
|
||||
|
||||
if (AddRec->isAffine()) {
|
||||
// If this is an affine expression the execution count of this branch is
|
||||
// equal to:
|
||||
// If this is an affine expression, the execution count of this branch is
|
||||
// the minimum unsigned root of the following equation:
|
||||
//
|
||||
// (0 - Start/Step) iff Start % Step == 0
|
||||
// Start + Step*N = 0 (mod 2^BW)
|
||||
//
|
||||
// equivalent to:
|
||||
//
|
||||
// Step*N = -Start (mod 2^BW)
|
||||
//
|
||||
// where BW is the common bit width of Start and Step.
|
||||
|
||||
// Get the initial value for the loop.
|
||||
SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
|
||||
if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
|
||||
SCEVHandle Step = AddRec->getOperand(1);
|
||||
|
||||
Step = getSCEVAtScope(Step, L->getParentLoop());
|
||||
SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
|
||||
|
||||
// Figure out if Start % Step == 0.
|
||||
// FIXME: We should add DivExpr and RemExpr operations to our AST.
|
||||
if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
|
||||
if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
|
||||
return SE.getNegativeSCEV(Start); // 0 - Start/1 == -Start
|
||||
if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
|
||||
return Start; // 0 - Start/-1 == Start
|
||||
// For now we handle only constant steps.
|
||||
|
||||
// Check to see if Start is divisible by SC with no remainder.
|
||||
if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
|
||||
ConstantInt *StartCC = StartC->getValue();
|
||||
Constant *StartNegC = ConstantExpr::getNeg(StartCC);
|
||||
Constant *Rem = ConstantExpr::getURem(StartNegC, StepC->getValue());
|
||||
if (Rem->isNullValue()) {
|
||||
Constant *Result = ConstantExpr::getUDiv(StartNegC,StepC->getValue());
|
||||
return SE.getUnknown(Result);
|
||||
}
|
||||
}
|
||||
// First, handle unitary steps.
|
||||
if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
|
||||
return SE.getNegativeSCEV(Start); // N = -Start (as unsigned)
|
||||
if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
|
||||
return Start; // N = Start (as unsigned)
|
||||
|
||||
// Then, try to solve the above equation provided that Start is constant.
|
||||
if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
|
||||
return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
|
||||
-StartC->getValue()->getValue(),SE);
|
||||
}
|
||||
} else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
|
||||
// If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
|
||||
|
Reference in New Issue
Block a user