mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-05-18 06:38:41 +00:00
It helps if I remember to actually add the file...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78116 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
48b2f3e485
commit
e2942c0c7d
774
lib/VMCore/ConstantsContext.h
Normal file
774
lib/VMCore/ConstantsContext.h
Normal file
@ -0,0 +1,774 @@
|
||||
//===---------------- ConstantsContext.h - Implementation ------*- C++ -*--===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines various helper methods and classes used by
|
||||
// LLVMContextImpl for creating and managing constants.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CONSTANTSCONTEXT_H
|
||||
#define LLVM_CONSTANTSCONTEXT_H
|
||||
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Operator.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/System/Mutex.h"
|
||||
#include "llvm/System/RWMutex.h"
|
||||
#include <map>
|
||||
|
||||
namespace llvm {
|
||||
template<class ValType>
|
||||
struct ConstantTraits;
|
||||
|
||||
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
|
||||
/// behind the scenes to implement unary constant exprs.
|
||||
class UnaryConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// allocate space for exactly one operand
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 1);
|
||||
}
|
||||
UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
|
||||
: ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
|
||||
Op<0>() = C;
|
||||
}
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
|
||||
/// behind the scenes to implement binary constant exprs.
|
||||
class BinaryConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// allocate space for exactly two operands
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 2);
|
||||
}
|
||||
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
|
||||
: ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
|
||||
Op<0>() = C1;
|
||||
Op<1>() = C2;
|
||||
}
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
|
||||
/// behind the scenes to implement select constant exprs.
|
||||
class SelectConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// allocate space for exactly three operands
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 3);
|
||||
}
|
||||
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
||||
: ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
|
||||
Op<0>() = C1;
|
||||
Op<1>() = C2;
|
||||
Op<2>() = C3;
|
||||
}
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
/// ExtractElementConstantExpr - This class is private to
|
||||
/// Constants.cpp, and is used behind the scenes to implement
|
||||
/// extractelement constant exprs.
|
||||
class ExtractElementConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// allocate space for exactly two operands
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 2);
|
||||
}
|
||||
ExtractElementConstantExpr(Constant *C1, Constant *C2)
|
||||
: ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
|
||||
Instruction::ExtractElement, &Op<0>(), 2) {
|
||||
Op<0>() = C1;
|
||||
Op<1>() = C2;
|
||||
}
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
/// InsertElementConstantExpr - This class is private to
|
||||
/// Constants.cpp, and is used behind the scenes to implement
|
||||
/// insertelement constant exprs.
|
||||
class InsertElementConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// allocate space for exactly three operands
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 3);
|
||||
}
|
||||
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
||||
: ConstantExpr(C1->getType(), Instruction::InsertElement,
|
||||
&Op<0>(), 3) {
|
||||
Op<0>() = C1;
|
||||
Op<1>() = C2;
|
||||
Op<2>() = C3;
|
||||
}
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
/// ShuffleVectorConstantExpr - This class is private to
|
||||
/// Constants.cpp, and is used behind the scenes to implement
|
||||
/// shufflevector constant exprs.
|
||||
class ShuffleVectorConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// allocate space for exactly three operands
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 3);
|
||||
}
|
||||
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
||||
: ConstantExpr(VectorType::get(
|
||||
cast<VectorType>(C1->getType())->getElementType(),
|
||||
cast<VectorType>(C3->getType())->getNumElements()),
|
||||
Instruction::ShuffleVector,
|
||||
&Op<0>(), 3) {
|
||||
Op<0>() = C1;
|
||||
Op<1>() = C2;
|
||||
Op<2>() = C3;
|
||||
}
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
/// ExtractValueConstantExpr - This class is private to
|
||||
/// Constants.cpp, and is used behind the scenes to implement
|
||||
/// extractvalue constant exprs.
|
||||
class ExtractValueConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// allocate space for exactly one operand
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 1);
|
||||
}
|
||||
ExtractValueConstantExpr(Constant *Agg,
|
||||
const SmallVector<unsigned, 4> &IdxList,
|
||||
const Type *DestTy)
|
||||
: ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
|
||||
Indices(IdxList) {
|
||||
Op<0>() = Agg;
|
||||
}
|
||||
|
||||
/// Indices - These identify which value to extract.
|
||||
const SmallVector<unsigned, 4> Indices;
|
||||
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
/// InsertValueConstantExpr - This class is private to
|
||||
/// Constants.cpp, and is used behind the scenes to implement
|
||||
/// insertvalue constant exprs.
|
||||
class InsertValueConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// allocate space for exactly one operand
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 2);
|
||||
}
|
||||
InsertValueConstantExpr(Constant *Agg, Constant *Val,
|
||||
const SmallVector<unsigned, 4> &IdxList,
|
||||
const Type *DestTy)
|
||||
: ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
|
||||
Indices(IdxList) {
|
||||
Op<0>() = Agg;
|
||||
Op<1>() = Val;
|
||||
}
|
||||
|
||||
/// Indices - These identify the position for the insertion.
|
||||
const SmallVector<unsigned, 4> Indices;
|
||||
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
|
||||
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
|
||||
/// used behind the scenes to implement getelementpr constant exprs.
|
||||
class GetElementPtrConstantExpr : public ConstantExpr {
|
||||
GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
|
||||
const Type *DestTy);
|
||||
public:
|
||||
static GetElementPtrConstantExpr *Create(Constant *C,
|
||||
const std::vector<Constant*>&IdxList,
|
||||
const Type *DestTy) {
|
||||
return
|
||||
new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
|
||||
}
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
// CompareConstantExpr - This class is private to Constants.cpp, and is used
|
||||
// behind the scenes to implement ICmp and FCmp constant expressions. This is
|
||||
// needed in order to store the predicate value for these instructions.
|
||||
struct CompareConstantExpr : public ConstantExpr {
|
||||
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
||||
// allocate space for exactly two operands
|
||||
void *operator new(size_t s) {
|
||||
return User::operator new(s, 2);
|
||||
}
|
||||
unsigned short predicate;
|
||||
CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
|
||||
unsigned short pred, Constant* LHS, Constant* RHS)
|
||||
: ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
|
||||
Op<0>() = LHS;
|
||||
Op<1>() = RHS;
|
||||
}
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
||||
};
|
||||
|
||||
template <>
|
||||
struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
|
||||
|
||||
template <>
|
||||
struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
|
||||
|
||||
template <>
|
||||
struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
|
||||
|
||||
template <>
|
||||
struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
|
||||
|
||||
template <>
|
||||
struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
|
||||
|
||||
template <>
|
||||
struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
|
||||
|
||||
template <>
|
||||
struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
|
||||
|
||||
template <>
|
||||
struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
|
||||
|
||||
template <>
|
||||
struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
|
||||
};
|
||||
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
|
||||
|
||||
|
||||
template <>
|
||||
struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
|
||||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
|
||||
|
||||
struct ExprMapKeyType {
|
||||
typedef SmallVector<unsigned, 4> IndexList;
|
||||
|
||||
ExprMapKeyType(unsigned opc,
|
||||
const std::vector<Constant*> &ops,
|
||||
unsigned short pred = 0,
|
||||
const IndexList &inds = IndexList())
|
||||
: opcode(opc), predicate(pred), operands(ops), indices(inds) {}
|
||||
uint16_t opcode;
|
||||
uint16_t predicate;
|
||||
std::vector<Constant*> operands;
|
||||
IndexList indices;
|
||||
bool operator==(const ExprMapKeyType& that) const {
|
||||
return this->opcode == that.opcode &&
|
||||
this->predicate == that.predicate &&
|
||||
this->operands == that.operands &&
|
||||
this->indices == that.indices;
|
||||
}
|
||||
bool operator<(const ExprMapKeyType & that) const {
|
||||
return this->opcode < that.opcode ||
|
||||
(this->opcode == that.opcode && this->predicate < that.predicate) ||
|
||||
(this->opcode == that.opcode && this->predicate == that.predicate &&
|
||||
this->operands < that.operands) ||
|
||||
(this->opcode == that.opcode && this->predicate == that.predicate &&
|
||||
this->operands == that.operands && this->indices < that.indices);
|
||||
}
|
||||
|
||||
bool operator!=(const ExprMapKeyType& that) const {
|
||||
return !(*this == that);
|
||||
}
|
||||
};
|
||||
|
||||
// The number of operands for each ConstantCreator::create method is
|
||||
// determined by the ConstantTraits template.
|
||||
// ConstantCreator - A class that is used to create constants by
|
||||
// ValueMap*. This class should be partially specialized if there is
|
||||
// something strange that needs to be done to interface to the ctor for the
|
||||
// constant.
|
||||
//
|
||||
template<typename T, typename Alloc>
|
||||
struct ConstantTraits< std::vector<T, Alloc> > {
|
||||
static unsigned uses(const std::vector<T, Alloc>& v) {
|
||||
return v.size();
|
||||
}
|
||||
};
|
||||
|
||||
template<class ConstantClass, class TypeClass, class ValType>
|
||||
struct ConstantCreator {
|
||||
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
|
||||
return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
|
||||
}
|
||||
};
|
||||
|
||||
template<class ConstantClass, class TypeClass>
|
||||
struct ConvertConstantType {
|
||||
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
|
||||
llvm_unreachable("This type cannot be converted!");
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
|
||||
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
|
||||
unsigned short pred = 0) {
|
||||
if (Instruction::isCast(V.opcode))
|
||||
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
|
||||
if ((V.opcode >= Instruction::BinaryOpsBegin &&
|
||||
V.opcode < Instruction::BinaryOpsEnd))
|
||||
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
|
||||
if (V.opcode == Instruction::Select)
|
||||
return new SelectConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::ExtractElement)
|
||||
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
|
||||
if (V.opcode == Instruction::InsertElement)
|
||||
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::ShuffleVector)
|
||||
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::InsertValue)
|
||||
return new InsertValueConstantExpr(V.operands[0], V.operands[1],
|
||||
V.indices, Ty);
|
||||
if (V.opcode == Instruction::ExtractValue)
|
||||
return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
|
||||
if (V.opcode == Instruction::GetElementPtr) {
|
||||
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
|
||||
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
|
||||
}
|
||||
|
||||
// The compare instructions are weird. We have to encode the predicate
|
||||
// value and it is combined with the instruction opcode by multiplying
|
||||
// the opcode by one hundred. We must decode this to get the predicate.
|
||||
if (V.opcode == Instruction::ICmp)
|
||||
return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate,
|
||||
V.operands[0], V.operands[1]);
|
||||
if (V.opcode == Instruction::FCmp)
|
||||
return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate,
|
||||
V.operands[0], V.operands[1]);
|
||||
llvm_unreachable("Invalid ConstantExpr!");
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConvertConstantType<ConstantExpr, Type> {
|
||||
static void convert(ConstantExpr *OldC, const Type *NewTy) {
|
||||
Constant *New;
|
||||
switch (OldC->getOpcode()) {
|
||||
case Instruction::Trunc:
|
||||
case Instruction::ZExt:
|
||||
case Instruction::SExt:
|
||||
case Instruction::FPTrunc:
|
||||
case Instruction::FPExt:
|
||||
case Instruction::UIToFP:
|
||||
case Instruction::SIToFP:
|
||||
case Instruction::FPToUI:
|
||||
case Instruction::FPToSI:
|
||||
case Instruction::PtrToInt:
|
||||
case Instruction::IntToPtr:
|
||||
case Instruction::BitCast:
|
||||
New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
|
||||
NewTy);
|
||||
break;
|
||||
case Instruction::Select:
|
||||
New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
|
||||
OldC->getOperand(1),
|
||||
OldC->getOperand(2));
|
||||
break;
|
||||
default:
|
||||
assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
|
||||
OldC->getOpcode() < Instruction::BinaryOpsEnd);
|
||||
New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
|
||||
OldC->getOperand(1));
|
||||
break;
|
||||
case Instruction::GetElementPtr:
|
||||
// Make everyone now use a constant of the new type...
|
||||
std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
|
||||
New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
|
||||
&Idx[0], Idx.size());
|
||||
break;
|
||||
}
|
||||
|
||||
assert(New != OldC && "Didn't replace constant??");
|
||||
OldC->uncheckedReplaceAllUsesWith(New);
|
||||
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
||||
}
|
||||
};
|
||||
|
||||
// ConstantAggregateZero does not take extra "value" argument...
|
||||
template<class ValType>
|
||||
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
|
||||
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
|
||||
return new ConstantAggregateZero(Ty);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConvertConstantType<ConstantVector, VectorType> {
|
||||
static void convert(ConstantVector *OldC, const VectorType *NewTy) {
|
||||
// Make everyone now use a constant of the new type...
|
||||
std::vector<Constant*> C;
|
||||
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
||||
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
||||
Constant *New = ConstantVector::get(NewTy, C);
|
||||
assert(New != OldC && "Didn't replace constant??");
|
||||
OldC->uncheckedReplaceAllUsesWith(New);
|
||||
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConvertConstantType<ConstantAggregateZero, Type> {
|
||||
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
|
||||
// Make everyone now use a constant of the new type...
|
||||
Constant *New = ConstantAggregateZero::get(NewTy);
|
||||
assert(New != OldC && "Didn't replace constant??");
|
||||
OldC->uncheckedReplaceAllUsesWith(New);
|
||||
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConvertConstantType<ConstantArray, ArrayType> {
|
||||
static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
|
||||
// Make everyone now use a constant of the new type...
|
||||
std::vector<Constant*> C;
|
||||
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
||||
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
||||
Constant *New = ConstantArray::get(NewTy, C);
|
||||
assert(New != OldC && "Didn't replace constant??");
|
||||
OldC->uncheckedReplaceAllUsesWith(New);
|
||||
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConvertConstantType<ConstantStruct, StructType> {
|
||||
static void convert(ConstantStruct *OldC, const StructType *NewTy) {
|
||||
// Make everyone now use a constant of the new type...
|
||||
std::vector<Constant*> C;
|
||||
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
||||
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
||||
Constant *New = ConstantStruct::get(NewTy, C);
|
||||
assert(New != OldC && "Didn't replace constant??");
|
||||
|
||||
OldC->uncheckedReplaceAllUsesWith(New);
|
||||
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
||||
}
|
||||
};
|
||||
|
||||
// ConstantPointerNull does not take extra "value" argument...
|
||||
template<class ValType>
|
||||
struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
|
||||
static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
|
||||
return new ConstantPointerNull(Ty);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConvertConstantType<ConstantPointerNull, PointerType> {
|
||||
static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
|
||||
// Make everyone now use a constant of the new type...
|
||||
Constant *New = ConstantPointerNull::get(NewTy);
|
||||
assert(New != OldC && "Didn't replace constant??");
|
||||
OldC->uncheckedReplaceAllUsesWith(New);
|
||||
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
||||
}
|
||||
};
|
||||
|
||||
// UndefValue does not take extra "value" argument...
|
||||
template<class ValType>
|
||||
struct ConstantCreator<UndefValue, Type, ValType> {
|
||||
static UndefValue *create(const Type *Ty, const ValType &V) {
|
||||
return new UndefValue(Ty);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConvertConstantType<UndefValue, Type> {
|
||||
static void convert(UndefValue *OldC, const Type *NewTy) {
|
||||
// Make everyone now use a constant of the new type.
|
||||
Constant *New = UndefValue::get(NewTy);
|
||||
assert(New != OldC && "Didn't replace constant??");
|
||||
OldC->uncheckedReplaceAllUsesWith(New);
|
||||
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
||||
}
|
||||
};
|
||||
|
||||
template<class ValType, class TypeClass, class ConstantClass,
|
||||
bool HasLargeKey = false /*true for arrays and structs*/ >
|
||||
class ValueMap : public AbstractTypeUser {
|
||||
public:
|
||||
typedef std::pair<const Type*, ValType> MapKey;
|
||||
typedef std::map<MapKey, Constant *> MapTy;
|
||||
typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
|
||||
typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
|
||||
private:
|
||||
/// Map - This is the main map from the element descriptor to the Constants.
|
||||
/// This is the primary way we avoid creating two of the same shape
|
||||
/// constant.
|
||||
MapTy Map;
|
||||
|
||||
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
|
||||
/// from the constants to their element in Map. This is important for
|
||||
/// removal of constants from the array, which would otherwise have to scan
|
||||
/// through the map with very large keys.
|
||||
InverseMapTy InverseMap;
|
||||
|
||||
/// AbstractTypeMap - Map for abstract type constants.
|
||||
///
|
||||
AbstractTypeMapTy AbstractTypeMap;
|
||||
|
||||
/// ValueMapLock - Mutex for this map.
|
||||
sys::SmartMutex<true> ValueMapLock;
|
||||
|
||||
public:
|
||||
// NOTE: This function is not locked. It is the caller's responsibility
|
||||
// to enforce proper synchronization.
|
||||
typename MapTy::iterator map_end() { return Map.end(); }
|
||||
|
||||
/// InsertOrGetItem - Return an iterator for the specified element.
|
||||
/// If the element exists in the map, the returned iterator points to the
|
||||
/// entry and Exists=true. If not, the iterator points to the newly
|
||||
/// inserted entry and returns Exists=false. Newly inserted entries have
|
||||
/// I->second == 0, and should be filled in.
|
||||
/// NOTE: This function is not locked. It is the caller's responsibility
|
||||
// to enforce proper synchronization.
|
||||
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
|
||||
&InsertVal,
|
||||
bool &Exists) {
|
||||
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
|
||||
Exists = !IP.second;
|
||||
return IP.first;
|
||||
}
|
||||
|
||||
private:
|
||||
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
|
||||
if (HasLargeKey) {
|
||||
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
|
||||
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
|
||||
IMI->second->second == CP &&
|
||||
"InverseMap corrupt!");
|
||||
return IMI->second;
|
||||
}
|
||||
|
||||
typename MapTy::iterator I =
|
||||
Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
|
||||
getValType(CP)));
|
||||
if (I == Map.end() || I->second != CP) {
|
||||
// FIXME: This should not use a linear scan. If this gets to be a
|
||||
// performance problem, someone should look at this.
|
||||
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
|
||||
/* empty */;
|
||||
}
|
||||
return I;
|
||||
}
|
||||
|
||||
ConstantClass* Create(const TypeClass *Ty, const ValType &V,
|
||||
typename MapTy::iterator I) {
|
||||
ConstantClass* Result =
|
||||
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
|
||||
|
||||
assert(Result->getType() == Ty && "Type specified is not correct!");
|
||||
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
|
||||
|
||||
if (HasLargeKey) // Remember the reverse mapping if needed.
|
||||
InverseMap.insert(std::make_pair(Result, I));
|
||||
|
||||
// If the type of the constant is abstract, make sure that an entry
|
||||
// exists for it in the AbstractTypeMap.
|
||||
if (Ty->isAbstract()) {
|
||||
typename AbstractTypeMapTy::iterator TI =
|
||||
AbstractTypeMap.find(Ty);
|
||||
|
||||
if (TI == AbstractTypeMap.end()) {
|
||||
// Add ourselves to the ATU list of the type.
|
||||
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
|
||||
|
||||
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
|
||||
}
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
public:
|
||||
|
||||
/// getOrCreate - Return the specified constant from the map, creating it if
|
||||
/// necessary.
|
||||
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
|
||||
sys::SmartScopedLock<true> Lock(ValueMapLock);
|
||||
MapKey Lookup(Ty, V);
|
||||
ConstantClass* Result = 0;
|
||||
|
||||
typename MapTy::iterator I = Map.find(Lookup);
|
||||
// Is it in the map?
|
||||
if (I != Map.end())
|
||||
Result = static_cast<ConstantClass *>(I->second);
|
||||
|
||||
if (!Result) {
|
||||
// If no preexisting value, create one now...
|
||||
Result = Create(Ty, V, I);
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
void remove(ConstantClass *CP) {
|
||||
sys::SmartScopedLock<true> Lock(ValueMapLock);
|
||||
typename MapTy::iterator I = FindExistingElement(CP);
|
||||
assert(I != Map.end() && "Constant not found in constant table!");
|
||||
assert(I->second == CP && "Didn't find correct element?");
|
||||
|
||||
if (HasLargeKey) // Remember the reverse mapping if needed.
|
||||
InverseMap.erase(CP);
|
||||
|
||||
// Now that we found the entry, make sure this isn't the entry that
|
||||
// the AbstractTypeMap points to.
|
||||
const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
|
||||
if (Ty->isAbstract()) {
|
||||
assert(AbstractTypeMap.count(Ty) &&
|
||||
"Abstract type not in AbstractTypeMap?");
|
||||
typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
|
||||
if (ATMEntryIt == I) {
|
||||
// Yes, we are removing the representative entry for this type.
|
||||
// See if there are any other entries of the same type.
|
||||
typename MapTy::iterator TmpIt = ATMEntryIt;
|
||||
|
||||
// First check the entry before this one...
|
||||
if (TmpIt != Map.begin()) {
|
||||
--TmpIt;
|
||||
if (TmpIt->first.first != Ty) // Not the same type, move back...
|
||||
++TmpIt;
|
||||
}
|
||||
|
||||
// If we didn't find the same type, try to move forward...
|
||||
if (TmpIt == ATMEntryIt) {
|
||||
++TmpIt;
|
||||
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
|
||||
--TmpIt; // No entry afterwards with the same type
|
||||
}
|
||||
|
||||
// If there is another entry in the map of the same abstract type,
|
||||
// update the AbstractTypeMap entry now.
|
||||
if (TmpIt != ATMEntryIt) {
|
||||
ATMEntryIt = TmpIt;
|
||||
} else {
|
||||
// Otherwise, we are removing the last instance of this type
|
||||
// from the table. Remove from the ATM, and from user list.
|
||||
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
|
||||
AbstractTypeMap.erase(Ty);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Map.erase(I);
|
||||
}
|
||||
|
||||
|
||||
/// MoveConstantToNewSlot - If we are about to change C to be the element
|
||||
/// specified by I, update our internal data structures to reflect this
|
||||
/// fact.
|
||||
/// NOTE: This function is not locked. It is the responsibility of the
|
||||
/// caller to enforce proper synchronization if using this method.
|
||||
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
|
||||
// First, remove the old location of the specified constant in the map.
|
||||
typename MapTy::iterator OldI = FindExistingElement(C);
|
||||
assert(OldI != Map.end() && "Constant not found in constant table!");
|
||||
assert(OldI->second == C && "Didn't find correct element?");
|
||||
|
||||
// If this constant is the representative element for its abstract type,
|
||||
// update the AbstractTypeMap so that the representative element is I.
|
||||
if (C->getType()->isAbstract()) {
|
||||
typename AbstractTypeMapTy::iterator ATI =
|
||||
AbstractTypeMap.find(C->getType());
|
||||
assert(ATI != AbstractTypeMap.end() &&
|
||||
"Abstract type not in AbstractTypeMap?");
|
||||
if (ATI->second == OldI)
|
||||
ATI->second = I;
|
||||
}
|
||||
|
||||
// Remove the old entry from the map.
|
||||
Map.erase(OldI);
|
||||
|
||||
// Update the inverse map so that we know that this constant is now
|
||||
// located at descriptor I.
|
||||
if (HasLargeKey) {
|
||||
assert(I->second == C && "Bad inversemap entry!");
|
||||
InverseMap[C] = I;
|
||||
}
|
||||
}
|
||||
|
||||
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
|
||||
sys::SmartScopedLock<true> Lock(ValueMapLock);
|
||||
typename AbstractTypeMapTy::iterator I =
|
||||
AbstractTypeMap.find(cast<Type>(OldTy));
|
||||
|
||||
assert(I != AbstractTypeMap.end() &&
|
||||
"Abstract type not in AbstractTypeMap?");
|
||||
|
||||
// Convert a constant at a time until the last one is gone. The last one
|
||||
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
|
||||
// eliminated eventually.
|
||||
do {
|
||||
ConvertConstantType<ConstantClass,
|
||||
TypeClass>::convert(
|
||||
static_cast<ConstantClass *>(I->second->second),
|
||||
cast<TypeClass>(NewTy));
|
||||
|
||||
I = AbstractTypeMap.find(cast<Type>(OldTy));
|
||||
} while (I != AbstractTypeMap.end());
|
||||
}
|
||||
|
||||
// If the type became concrete without being refined to any other existing
|
||||
// type, we just remove ourselves from the ATU list.
|
||||
void typeBecameConcrete(const DerivedType *AbsTy) {
|
||||
AbsTy->removeAbstractTypeUser(this);
|
||||
}
|
||||
|
||||
void dump() const {
|
||||
DOUT << "Constant.cpp: ValueMap\n";
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user