Fix PR1798 - an error in the evaluation of SCEVAddRecExpr at an

arbitrary iteration.

The patch:
1) changes SCEVSDivExpr into SCEVUDivExpr,
2) replaces PartialFact() function with BinomialCoefficient(); the 
computations (essentially, the division) in BinomialCoefficient() are 
performed with the apprioprate bitwidth necessary to avoid overflow; 
unsigned division is used instead of the signed one.

Computations in BinomialCoefficient() require support from the code 
generator for APInts. Currently, we use a hack rounding up the 
neccessary bitwidth to the nearest power of 2. The hack is easy to turn 
off in future.

One remaining issue: we assume the divisor of the binomial coefficient 
formula can be computed accurately using 16 bits. It means we can handle 
AddRecs of length up to 9. In future, we should use APInts to evaluate 
the divisor.

Thanks to Nicholas for cooperation!


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46955 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Wojciech Matyjewicz 2008-02-11 11:03:14 +00:00
parent 0753fc1850
commit e3320a1bcc
5 changed files with 114 additions and 64 deletions

View File

@ -225,7 +225,7 @@ namespace llvm {
Ops.push_back(RHS);
return getMulExpr(Ops);
}
SCEVHandle getSDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
SCEVHandle getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
SCEVHandle getAddRecExpr(const SCEVHandle &Start, const SCEVHandle &Step,
const Loop *L);
SCEVHandle getAddRecExpr(std::vector<SCEVHandle> &Operands,

View File

@ -126,10 +126,10 @@ namespace llvm {
Value *visitMulExpr(SCEVMulExpr *S);
Value *visitSDivExpr(SCEVSDivExpr *S) {
Value *visitUDivExpr(SCEVUDivExpr *S) {
Value *LHS = expand(S->getLHS());
Value *RHS = expand(S->getRHS());
return InsertBinop(Instruction::SDiv, LHS, RHS, InsertPt);
return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
}
Value *visitAddRecExpr(SCEVAddRecExpr *S);

View File

@ -25,7 +25,7 @@ namespace llvm {
// These should be ordered in terms of increasing complexity to make the
// folders simpler.
scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
scSDivExpr, scAddRecExpr, scSMaxExpr, scUnknown, scCouldNotCompute
scUDivExpr, scAddRecExpr, scSMaxExpr, scUnknown, scCouldNotCompute
};
//===--------------------------------------------------------------------===//
@ -322,16 +322,16 @@ namespace llvm {
//===--------------------------------------------------------------------===//
/// SCEVSDivExpr - This class represents a binary signed division operation.
/// SCEVUDivExpr - This class represents a binary unsigned division operation.
///
class SCEVSDivExpr : public SCEV {
class SCEVUDivExpr : public SCEV {
friend class ScalarEvolution;
SCEVHandle LHS, RHS;
SCEVSDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs)
: SCEV(scSDivExpr), LHS(lhs), RHS(rhs) {}
SCEVUDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs)
: SCEV(scUDivExpr), LHS(lhs), RHS(rhs) {}
virtual ~SCEVSDivExpr();
virtual ~SCEVUDivExpr();
public:
const SCEVHandle &getLHS() const { return LHS; }
const SCEVHandle &getRHS() const { return RHS; }
@ -353,7 +353,7 @@ namespace llvm {
if (L == LHS && R == RHS)
return this;
else
return SE.getSDivExpr(L, R);
return SE.getUDivExpr(L, R);
}
@ -363,9 +363,9 @@ namespace llvm {
void print(std::ostream *OS) const { if (OS) print(*OS); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEVSDivExpr *S) { return true; }
static inline bool classof(const SCEVUDivExpr *S) { return true; }
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scSDivExpr;
return S->getSCEVType() == scUDivExpr;
}
};
@ -540,8 +540,8 @@ namespace llvm {
return ((SC*)this)->visitAddExpr((SCEVAddExpr*)S);
case scMulExpr:
return ((SC*)this)->visitMulExpr((SCEVMulExpr*)S);
case scSDivExpr:
return ((SC*)this)->visitSDivExpr((SCEVSDivExpr*)S);
case scUDivExpr:
return ((SC*)this)->visitUDivExpr((SCEVUDivExpr*)S);
case scAddRecExpr:
return ((SC*)this)->visitAddRecExpr((SCEVAddRecExpr*)S);
case scSMaxExpr:

View File

@ -328,21 +328,21 @@ replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
}
// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
// input. Don't use a SCEVHandle here, or else the object will never be
// deleted!
static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
SCEVSDivExpr*> > SCEVSDivs;
SCEVUDivExpr*> > SCEVUDivs;
SCEVSDivExpr::~SCEVSDivExpr() {
SCEVSDivs->erase(std::make_pair(LHS, RHS));
SCEVUDivExpr::~SCEVUDivExpr() {
SCEVUDivs->erase(std::make_pair(LHS, RHS));
}
void SCEVSDivExpr::print(std::ostream &OS) const {
OS << "(" << *LHS << " /s " << *RHS << ")";
void SCEVUDivExpr::print(std::ostream &OS) const {
OS << "(" << *LHS << " /u " << *RHS << ")";
}
const Type *SCEVSDivExpr::getType() const {
const Type *SCEVUDivExpr::getType() const {
return LHS->getType();
}
@ -532,57 +532,110 @@ SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
}
/// PartialFact - Compute V!/(V-NumSteps)!
static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps,
ScalarEvolution &SE) {
/// BinomialCoefficient - Compute BC(It, K). The result is of the same type as
/// It. Assume, K > 0.
static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
ScalarEvolution &SE) {
// We are using the following formula for BC(It, K):
//
// BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
//
// Suppose, W is the bitwidth of It (and of the return value as well). We
// must be prepared for overflow. Hence, we must assure that the result of
// our computation is equal to the accurate one modulo 2^W. Unfortunately,
// division isn't safe in modular arithmetic. This means we must perform the
// whole computation accurately and then truncate the result to W bits.
//
// The dividend of the formula is a multiplication of K integers of bitwidth
// W. K*W bits suffice to compute it accurately.
//
// FIXME: We assume the divisor can be accurately computed using 16-bit
// unsigned integer type. It is true up to K = 8 (AddRecs of length 9). In
// future we may use APInt to use the minimum number of bits necessary to
// compute it accurately.
//
// It is safe to use unsigned division here: the dividend is nonnegative and
// the divisor is positive.
// Handle the simplest case efficiently.
if (K == 1)
return It;
assert(K < 9 && "We cannot handle such long AddRecs yet.");
// FIXME: A temporary hack to remove in future. Arbitrary precision integers
// aren't supported by the code generator yet. For the dividend, the bitwidth
// we use is the smallest power of 2 greater or equal to K*W and less or equal
// to 64. Note that setting the upper bound for bitwidth may still lead to
// miscompilation in some cases.
unsigned DividendBits = 1U << Log2_32_Ceil(K * It->getBitWidth());
if (DividendBits > 64)
DividendBits = 64;
#if 0 // Waiting for the APInt support in the code generator...
unsigned DividendBits = K * It->getBitWidth();
#endif
const IntegerType *DividendTy = IntegerType::get(DividendBits);
const SCEVHandle ExIt = SE.getZeroExtendExpr(It, DividendTy);
// The final number of bits we need to perform the division is the maximum of
// dividend and divisor bitwidths.
const IntegerType *DivisionTy =
IntegerType::get(std::max(DividendBits, 16U));
// Compute K! We know K >= 2 here.
unsigned F = 2;
for (unsigned i = 3; i <= K; ++i)
F *= i;
APInt Divisor(DivisionTy->getBitWidth(), F);
// Handle this case efficiently, it is common to have constant iteration
// counts while computing loop exit values.
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
const APInt& Val = SC->getValue()->getValue();
APInt Result(Val.getBitWidth(), 1);
for (; NumSteps; --NumSteps)
Result *= Val-(NumSteps-1);
return SE.getConstant(Result);
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(ExIt)) {
const APInt& N = SC->getValue()->getValue();
APInt Dividend(N.getBitWidth(), 1);
for (; K; --K)
Dividend *= N-(K-1);
if (DividendTy != DivisionTy)
Dividend = Dividend.zext(DivisionTy->getBitWidth());
return SE.getConstant(Dividend.udiv(Divisor).trunc(It->getBitWidth()));
}
const Type *Ty = V->getType();
if (NumSteps == 0)
return SE.getIntegerSCEV(1, Ty);
SCEVHandle Result = V;
for (unsigned i = 1; i != NumSteps; ++i)
Result = SE.getMulExpr(Result, SE.getMinusSCEV(V,
SE.getIntegerSCEV(i, Ty)));
return Result;
SCEVHandle Dividend = ExIt;
for (unsigned i = 1; i != K; ++i)
Dividend =
SE.getMulExpr(Dividend,
SE.getMinusSCEV(ExIt, SE.getIntegerSCEV(i, DividendTy)));
if (DividendTy != DivisionTy)
Dividend = SE.getZeroExtendExpr(Dividend, DivisionTy);
return
SE.getTruncateExpr(SE.getUDivExpr(Dividend, SE.getConstant(Divisor)),
It->getType());
}
/// evaluateAtIteration - Return the value of this chain of recurrences at
/// the specified iteration number. We can evaluate this recurrence by
/// multiplying each element in the chain by the binomial coefficient
/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
///
/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
///
/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
/// Is the binomial equation safe using modular arithmetic??
/// where BC(It, k) stands for binomial coefficient.
///
SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
ScalarEvolution &SE) const {
SCEVHandle Result = getStart();
int Divisor = 1;
const Type *Ty = It->getType();
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
SCEVHandle BC = PartialFact(It, i, SE);
Divisor *= i;
SCEVHandle Val = SE.getSDivExpr(SE.getMulExpr(BC, getOperand(i)),
SE.getIntegerSCEV(Divisor,Ty));
// The computation is correct in the face of overflow provided that the
// multiplication is performed _after_ the evaluation of the binomial
// coefficient.
SCEVHandle Val = SE.getMulExpr(getOperand(i),
BinomialCoefficient(It, i, SE));
Result = SE.getAddExpr(Result, Val);
}
return Result;
}
//===----------------------------------------------------------------------===//
// SCEV Expression folder implementations
//===----------------------------------------------------------------------===//
@ -1039,24 +1092,22 @@ SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
return Result;
}
SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
if (RHSC->getValue()->equalsInt(1))
return LHS; // X sdiv 1 --> x
if (RHSC->getValue()->isAllOnesValue())
return getNegativeSCEV(LHS); // X sdiv -1 --> -x
return LHS; // X udiv 1 --> x
if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Constant *LHSCV = LHSC->getValue();
Constant *RHSCV = RHSC->getValue();
return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV));
return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
}
}
// FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
return Result;
}
@ -1555,7 +1606,7 @@ static uint32_t GetMinTrailingZeros(SCEVHandle S) {
return MinOpRes;
}
// SCEVSDivExpr, SCEVUnknown
// SCEVUDivExpr, SCEVUnknown
return 0;
}
@ -1574,8 +1625,8 @@ SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
case Instruction::Mul:
return SE.getMulExpr(getSCEV(I->getOperand(0)),
getSCEV(I->getOperand(1)));
case Instruction::SDiv:
return SE.getSDivExpr(getSCEV(I->getOperand(0)),
case Instruction::UDiv:
return SE.getUDivExpr(getSCEV(I->getOperand(0)),
getSCEV(I->getOperand(1)));
case Instruction::Sub:
return SE.getMinusSCEV(getSCEV(I->getOperand(0)),
@ -2264,14 +2315,14 @@ SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
return Comm;
}
if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
if (LHS == UnknownValue) return LHS;
SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
if (RHS == UnknownValue) return RHS;
if (LHS == Div->getLHS() && RHS == Div->getRHS())
return Div; // must be loop invariant
return SE.getSDivExpr(LHS, RHS);
return SE.getUDivExpr(LHS, RHS);
}
// If this is a loop recurrence for a loop that does not contain L, then we

View File

@ -1,6 +1,5 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis | grep printd | grep 1206807378
; PR1798
; XFAIL: *
declare void @printd(i32)