mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-27 13:30:05 +00:00
move DecomposeGEPExpression out into ValueTracking.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89956 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
fa3966881f
commit
e405c64f6b
@ -19,6 +19,7 @@
|
||||
#include <string>
|
||||
|
||||
namespace llvm {
|
||||
template <typename T> class SmallVectorImpl;
|
||||
class Value;
|
||||
class Instruction;
|
||||
class APInt;
|
||||
@ -77,6 +78,20 @@ namespace llvm {
|
||||
///
|
||||
bool CannotBeNegativeZero(const Value *V, unsigned Depth = 0);
|
||||
|
||||
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose
|
||||
/// it into a base pointer with a constant offset and a number of scaled
|
||||
/// symbolic offsets.
|
||||
///
|
||||
/// When TargetData is around, this function is capable of analyzing
|
||||
/// everything that Value::getUnderlyingObject() can look through. When not,
|
||||
/// it just looks through pointer casts.
|
||||
///
|
||||
const Value *DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
|
||||
SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
|
||||
const TargetData *TD);
|
||||
|
||||
|
||||
|
||||
/// FindScalarValue - Given an aggregrate and an sequence of indices, see if
|
||||
/// the scalar value indexed is already around as a register, for example if
|
||||
/// it were inserted directly into the aggregrate.
|
||||
|
@ -18,7 +18,6 @@
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/GlobalAlias.h"
|
||||
#include "llvm/GlobalVariable.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/IntrinsicInst.h"
|
||||
@ -28,11 +27,9 @@
|
||||
#include "llvm/Analysis/MemoryBuiltins.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
@ -379,160 +376,6 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
|
||||
return NoAA::getModRefInfo(CS1, CS2);
|
||||
}
|
||||
|
||||
/// GetLinearExpression - Analyze the specified value as a linear expression:
|
||||
/// "A*V + B". Return the scale and offset values as APInts and return V as a
|
||||
/// Value*. The incoming Value is known to be a scalar integer.
|
||||
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
|
||||
const TargetData *TD) {
|
||||
assert(isa<IntegerType>(V->getType()) && "Not an integer value");
|
||||
|
||||
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
|
||||
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
|
||||
switch (BOp->getOpcode()) {
|
||||
default: break;
|
||||
case Instruction::Or:
|
||||
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
|
||||
// analyze it.
|
||||
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
|
||||
break;
|
||||
// FALL THROUGH.
|
||||
case Instruction::Add:
|
||||
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
|
||||
Offset += RHSC->getValue();
|
||||
return V;
|
||||
case Instruction::Mul:
|
||||
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
|
||||
Offset *= RHSC->getValue();
|
||||
Scale *= RHSC->getValue();
|
||||
return V;
|
||||
case Instruction::Shl:
|
||||
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
|
||||
Offset <<= RHSC->getValue().getLimitedValue();
|
||||
Scale <<= RHSC->getValue().getLimitedValue();
|
||||
return V;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Scale = 1;
|
||||
Offset = 0;
|
||||
return V;
|
||||
}
|
||||
|
||||
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
|
||||
/// into a base pointer with a constant offset and a number of scaled symbolic
|
||||
/// offsets.
|
||||
///
|
||||
/// When TargetData is around, this function is capable of analyzing everything
|
||||
/// that Value::getUnderlyingObject() can look through. When not, it just looks
|
||||
/// through pointer casts.
|
||||
///
|
||||
/// FIXME: Move this out to ValueTracking.cpp
|
||||
///
|
||||
static const Value *DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
|
||||
SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
|
||||
const TargetData *TD) {
|
||||
// FIXME: Should limit depth like getUnderlyingObject?
|
||||
BaseOffs = 0;
|
||||
while (1) {
|
||||
// See if this is a bitcast or GEP.
|
||||
const Operator *Op = dyn_cast<Operator>(V);
|
||||
if (Op == 0) {
|
||||
// The only non-operator case we can handle are GlobalAliases.
|
||||
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
|
||||
if (!GA->mayBeOverridden()) {
|
||||
V = GA->getAliasee();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
return V;
|
||||
}
|
||||
|
||||
if (Op->getOpcode() == Instruction::BitCast) {
|
||||
V = Op->getOperand(0);
|
||||
continue;
|
||||
}
|
||||
|
||||
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
|
||||
if (GEPOp == 0)
|
||||
return V;
|
||||
|
||||
// Don't attempt to analyze GEPs over unsized objects.
|
||||
if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
|
||||
->getElementType()->isSized())
|
||||
return V;
|
||||
|
||||
// If we are lacking TargetData information, we can't compute the offets of
|
||||
// elements computed by GEPs. However, we can handle bitcast equivalent
|
||||
// GEPs.
|
||||
if (!TD) {
|
||||
if (!GEPOp->hasAllZeroIndices())
|
||||
return V;
|
||||
V = GEPOp->getOperand(0);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
|
||||
gep_type_iterator GTI = gep_type_begin(GEPOp);
|
||||
for (User::const_op_iterator I = next(GEPOp->op_begin()),
|
||||
E = GEPOp->op_end(); I != E; ++I) {
|
||||
Value *Index = *I;
|
||||
// Compute the (potentially symbolic) offset in bytes for this index.
|
||||
if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
|
||||
// For a struct, add the member offset.
|
||||
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
|
||||
if (FieldNo == 0) continue;
|
||||
|
||||
BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
|
||||
continue;
|
||||
}
|
||||
|
||||
// For an array/pointer, add the element offset, explicitly scaled.
|
||||
if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
|
||||
if (CIdx->isZero()) continue;
|
||||
BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO: Could handle linear expressions here like A[X+1], also A[X*4|1].
|
||||
uint64_t Scale = TD->getTypeAllocSize(*GTI);
|
||||
|
||||
unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
|
||||
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
|
||||
Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD);
|
||||
|
||||
Scale *= IndexScale.getZExtValue();
|
||||
BaseOffs += IndexOffset.getZExtValue()*Scale;
|
||||
|
||||
|
||||
// If we already had an occurrance of this index variable, merge this
|
||||
// scale into it. For example, we want to handle:
|
||||
// A[x][x] -> x*16 + x*4 -> x*20
|
||||
// This also ensures that 'x' only appears in the index list once.
|
||||
for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
|
||||
if (VarIndices[i].first == Index) {
|
||||
Scale += VarIndices[i].second;
|
||||
VarIndices.erase(VarIndices.begin()+i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Make sure that we have a scale that makes sense for this target's
|
||||
// pointer size.
|
||||
if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
|
||||
Scale <<= ShiftBits;
|
||||
Scale >>= ShiftBits;
|
||||
}
|
||||
|
||||
if (Scale)
|
||||
VarIndices.push_back(std::make_pair(Index, Scale));
|
||||
}
|
||||
|
||||
// Analyze the base pointer next.
|
||||
V = GEPOp->getOperand(0);
|
||||
}
|
||||
}
|
||||
|
||||
/// GetIndiceDifference - Dest and Src are the variable indices from two
|
||||
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
|
||||
/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
|
||||
|
@ -948,6 +948,160 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// GetLinearExpression - Analyze the specified value as a linear expression:
|
||||
/// "A*V + B". Return the scale and offset values as APInts and return V as a
|
||||
/// Value*. The incoming Value is known to be a scalar integer.
|
||||
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
|
||||
const TargetData *TD) {
|
||||
assert(isa<IntegerType>(V->getType()) && "Not an integer value");
|
||||
|
||||
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
|
||||
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
|
||||
switch (BOp->getOpcode()) {
|
||||
default: break;
|
||||
case Instruction::Or:
|
||||
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
|
||||
// analyze it.
|
||||
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
|
||||
break;
|
||||
// FALL THROUGH.
|
||||
case Instruction::Add:
|
||||
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
|
||||
Offset += RHSC->getValue();
|
||||
return V;
|
||||
case Instruction::Mul:
|
||||
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
|
||||
Offset *= RHSC->getValue();
|
||||
Scale *= RHSC->getValue();
|
||||
return V;
|
||||
case Instruction::Shl:
|
||||
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
|
||||
Offset <<= RHSC->getValue().getLimitedValue();
|
||||
Scale <<= RHSC->getValue().getLimitedValue();
|
||||
return V;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Scale = 1;
|
||||
Offset = 0;
|
||||
return V;
|
||||
}
|
||||
|
||||
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
|
||||
/// into a base pointer with a constant offset and a number of scaled symbolic
|
||||
/// offsets.
|
||||
///
|
||||
/// When TargetData is around, this function is capable of analyzing everything
|
||||
/// that Value::getUnderlyingObject() can look through. When not, it just looks
|
||||
/// through pointer casts.
|
||||
///
|
||||
const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
|
||||
SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
|
||||
const TargetData *TD) {
|
||||
// FIXME: Should limit depth like getUnderlyingObject?
|
||||
BaseOffs = 0;
|
||||
while (1) {
|
||||
// See if this is a bitcast or GEP.
|
||||
const Operator *Op = dyn_cast<Operator>(V);
|
||||
if (Op == 0) {
|
||||
// The only non-operator case we can handle are GlobalAliases.
|
||||
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
|
||||
if (!GA->mayBeOverridden()) {
|
||||
V = GA->getAliasee();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
return V;
|
||||
}
|
||||
|
||||
if (Op->getOpcode() == Instruction::BitCast) {
|
||||
V = Op->getOperand(0);
|
||||
continue;
|
||||
}
|
||||
|
||||
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
|
||||
if (GEPOp == 0)
|
||||
return V;
|
||||
|
||||
// Don't attempt to analyze GEPs over unsized objects.
|
||||
if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
|
||||
->getElementType()->isSized())
|
||||
return V;
|
||||
|
||||
// If we are lacking TargetData information, we can't compute the offets of
|
||||
// elements computed by GEPs. However, we can handle bitcast equivalent
|
||||
// GEPs.
|
||||
if (!TD) {
|
||||
if (!GEPOp->hasAllZeroIndices())
|
||||
return V;
|
||||
V = GEPOp->getOperand(0);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
|
||||
gep_type_iterator GTI = gep_type_begin(GEPOp);
|
||||
for (User::const_op_iterator I = GEPOp->op_begin()+1,
|
||||
E = GEPOp->op_end(); I != E; ++I) {
|
||||
Value *Index = *I;
|
||||
// Compute the (potentially symbolic) offset in bytes for this index.
|
||||
if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
|
||||
// For a struct, add the member offset.
|
||||
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
|
||||
if (FieldNo == 0) continue;
|
||||
|
||||
BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
|
||||
continue;
|
||||
}
|
||||
|
||||
// For an array/pointer, add the element offset, explicitly scaled.
|
||||
if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
|
||||
if (CIdx->isZero()) continue;
|
||||
BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO: Could handle linear expressions here like A[X+1], also A[X*4|1].
|
||||
uint64_t Scale = TD->getTypeAllocSize(*GTI);
|
||||
|
||||
unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
|
||||
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
|
||||
Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD);
|
||||
|
||||
Scale *= IndexScale.getZExtValue();
|
||||
BaseOffs += IndexOffset.getZExtValue()*Scale;
|
||||
|
||||
|
||||
// If we already had an occurrance of this index variable, merge this
|
||||
// scale into it. For example, we want to handle:
|
||||
// A[x][x] -> x*16 + x*4 -> x*20
|
||||
// This also ensures that 'x' only appears in the index list once.
|
||||
for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
|
||||
if (VarIndices[i].first == Index) {
|
||||
Scale += VarIndices[i].second;
|
||||
VarIndices.erase(VarIndices.begin()+i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Make sure that we have a scale that makes sense for this target's
|
||||
// pointer size.
|
||||
if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
|
||||
Scale <<= ShiftBits;
|
||||
Scale >>= ShiftBits;
|
||||
}
|
||||
|
||||
if (Scale)
|
||||
VarIndices.push_back(std::make_pair(Index, Scale));
|
||||
}
|
||||
|
||||
// Analyze the base pointer next.
|
||||
V = GEPOp->getOperand(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// This is the recursive version of BuildSubAggregate. It takes a few different
|
||||
// arguments. Idxs is the index within the nested struct From that we are
|
||||
// looking at now (which is of type IndexedType). IdxSkip is the number of
|
||||
|
Loading…
Reference in New Issue
Block a user