For PR950:

This patch removes the SetCC instructions and replaces them with the ICmp
and FCmp instructions. The SetCondInst instruction has been removed and
been replaced with ICmpInst and FCmpInst.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32751 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer
2006-12-23 06:05:41 +00:00
parent add2bd7f59
commit e4d87aa2de
87 changed files with 8093 additions and 6620 deletions

View File

@@ -45,36 +45,36 @@
#include <algorithm>
using namespace llvm;
STATISTIC(NumSetCCRemoved, "Number of setcc instruction eliminated");
STATISTIC(NumCmpRemoved, "Number of cmp instruction eliminated");
STATISTIC(NumOperandsCann, "Number of operands canonicalized");
STATISTIC(BranchRevectors, "Number of branches revectored");
namespace {
class ValueInfo;
class Relation {
Value *Val; // Relation to what value?
Instruction::BinaryOps Rel; // SetCC relation, or Add if no information
Value *Val; // Relation to what value?
unsigned Rel; // SetCC or ICmp relation, or Add if no information
public:
Relation(Value *V) : Val(V), Rel(Instruction::Add) {}
bool operator<(const Relation &R) const { return Val < R.Val; }
Value *getValue() const { return Val; }
Instruction::BinaryOps getRelation() const { return Rel; }
unsigned getRelation() const { return Rel; }
// contradicts - Return true if the relationship specified by the operand
// contradicts already known information.
//
bool contradicts(Instruction::BinaryOps Rel, const ValueInfo &VI) const;
bool contradicts(unsigned Rel, const ValueInfo &VI) const;
// incorporate - Incorporate information in the argument into this relation
// entry. This assumes that the information doesn't contradict itself. If
// any new information is gained, true is returned, otherwise false is
// returned to indicate that nothing was updated.
//
bool incorporate(Instruction::BinaryOps Rel, ValueInfo &VI);
bool incorporate(unsigned Rel, ValueInfo &VI);
// KnownResult - Whether or not this condition determines the result of a
// setcc in the program. False & True are intentionally 0 & 1 so we can
// convert to bool by casting after checking for unknown.
// setcc or icmp in the program. False & True are intentionally 0 & 1
// so we can convert to bool by casting after checking for unknown.
//
enum KnownResult { KnownFalse = 0, KnownTrue = 1, Unknown = 2 };
@@ -82,7 +82,7 @@ namespace {
// the specified relationship is true or false, return that. If we cannot
// determine the result required, return Unknown.
//
KnownResult getImpliedResult(Instruction::BinaryOps Rel) const;
KnownResult getImpliedResult(unsigned Rel) const;
// print - Output this relation to the specified stream
void print(std::ostream &OS) const;
@@ -269,19 +269,16 @@ namespace {
void PropagateBranchInfo(BranchInst *BI);
void PropagateSwitchInfo(SwitchInst *SI);
void PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI);
void PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
void PropagateRelation(unsigned Opcode, Value *Op0,
Value *Op1, RegionInfo &RI);
void UpdateUsersOfValue(Value *V, RegionInfo &RI);
void IncorporateInstruction(Instruction *Inst, RegionInfo &RI);
void ComputeReplacements(RegionInfo &RI);
// getSetCCResult - Given a setcc instruction, determine if the result is
// getCmpResult - Given a icmp instruction, determine if the result is
// determined by facts we already know about the region under analysis.
// Return KnownTrue, KnownFalse, or Unknown based on what we can determine.
//
Relation::KnownResult getSetCCResult(SetCondInst *SC, const RegionInfo &RI);
// Return KnownTrue, KnownFalse, or UnKnown based on what we can determine.
Relation::KnownResult getCmpResult(CmpInst *ICI, const RegionInfo &RI);
bool SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI);
bool SimplifyInstruction(Instruction *Inst, const RegionInfo &RI);
@@ -448,12 +445,12 @@ bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
return false;
// We can only forward the branch over the block if the block ends with a
// setcc we can determine the outcome for.
// cmp we can determine the outcome for.
//
// FIXME: we can make this more generic. Code below already handles more
// generic case.
SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition());
if (SCI == 0) return false;
if (!isa<CmpInst>(BI->getCondition()))
return false;
// Make a new RegionInfo structure so that we can simulate the effect of the
// PHI nodes in the block we are skipping over...
@@ -472,10 +469,10 @@ bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
int OpNum = PN->getBasicBlockIndex(BB);
assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?");
PropagateEquality(PN, PN->getIncomingValue(OpNum), NewRI);
} else if (SetCondInst *SCI = dyn_cast<SetCondInst>(I)) {
Relation::KnownResult Res = getSetCCResult(SCI, NewRI);
} else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
Relation::KnownResult Res = getCmpResult(CI, NewRI);
if (Res == Relation::Unknown) return false;
PropagateEquality(SCI, ConstantBool::get(Res), NewRI);
PropagateEquality(CI, ConstantBool::get(Res), NewRI);
} else {
assert(isa<BranchInst>(*I) && "Unexpected instruction type!");
}
@@ -827,7 +824,8 @@ void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
Relation &KnownRelation = VI.getRelation(Op1);
// If we already know they're equal, don't reprocess...
if (KnownRelation.getRelation() == Instruction::SetEQ)
if (KnownRelation.getRelation() == FCmpInst::FCMP_OEQ ||
KnownRelation.getRelation() == ICmpInst::ICMP_EQ)
return;
// If this is boolean, check to see if one of the operands is a constant. If
@@ -863,32 +861,55 @@ void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
PropagateEquality(BinaryOperator::getNotArgument(BOp),
ConstantBool::get(!CB->getValue()), RI);
// If we know the value of a SetCC instruction, propagate the information
// If we know the value of a FCmp instruction, propagate the information
// about the relation into this region as well.
//
if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
if (FCmpInst *FCI = dyn_cast<FCmpInst>(Inst)) {
if (CB->getValue()) { // If we know the condition is true...
// Propagate info about the LHS to the RHS & RHS to LHS
PropagateRelation(SCI->getOpcode(), SCI->getOperand(0),
SCI->getOperand(1), RI);
PropagateRelation(SCI->getSwappedCondition(),
SCI->getOperand(1), SCI->getOperand(0), RI);
PropagateRelation(FCI->getPredicate(), FCI->getOperand(0),
FCI->getOperand(1), RI);
PropagateRelation(FCI->getSwappedPredicate(),
FCI->getOperand(1), FCI->getOperand(0), RI);
} else { // If we know the condition is false...
// We know the opposite of the condition is true...
Instruction::BinaryOps C = SCI->getInverseCondition();
FCmpInst::Predicate C = FCI->getInversePredicate();
PropagateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI);
PropagateRelation(SetCondInst::getSwappedCondition(C),
SCI->getOperand(1), SCI->getOperand(0), RI);
PropagateRelation(C, FCI->getOperand(0), FCI->getOperand(1), RI);
PropagateRelation(FCmpInst::getSwappedPredicate(C),
FCI->getOperand(1), FCI->getOperand(0), RI);
}
}
// If we know the value of a ICmp instruction, propagate the information
// about the relation into this region as well.
//
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
if (CB->getValue()) { // If we know the condition is true...
// Propagate info about the LHS to the RHS & RHS to LHS
PropagateRelation(ICI->getPredicate(), ICI->getOperand(0),
ICI->getOperand(1), RI);
PropagateRelation(ICI->getSwappedPredicate(), ICI->getOperand(1),
ICI->getOperand(1), RI);
} else { // If we know the condition is false ...
// We know the opposite of the condition is true...
ICmpInst::Predicate C = ICI->getInversePredicate();
PropagateRelation(C, ICI->getOperand(0), ICI->getOperand(1), RI);
PropagateRelation(ICmpInst::getSwappedPredicate(C),
ICI->getOperand(1), ICI->getOperand(0), RI);
}
}
}
}
// Propagate information about Op0 to Op1 & visa versa
PropagateRelation(Instruction::SetEQ, Op0, Op1, RI);
PropagateRelation(Instruction::SetEQ, Op1, Op0, RI);
PropagateRelation(ICmpInst::ICMP_EQ, Op0, Op1, RI);
PropagateRelation(ICmpInst::ICMP_EQ, Op1, Op0, RI);
PropagateRelation(FCmpInst::FCMP_OEQ, Op0, Op1, RI);
PropagateRelation(FCmpInst::FCMP_OEQ, Op1, Op0, RI);
}
@@ -896,7 +917,7 @@ void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
// blocks in the specified region. Propagate the information about Op0 and
// anything derived from it into this region.
//
void CEE::PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
void CEE::PropagateRelation(unsigned Opcode, Value *Op0,
Value *Op1, RegionInfo &RI) {
assert(Op0->getType() == Op1->getType() && "Equal types expected!");
@@ -921,7 +942,10 @@ void CEE::PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
if (Op1R.contradicts(Opcode, VI)) {
Op1R.contradicts(Opcode, VI);
cerr << "Contradiction found for opcode: "
<< Instruction::getOpcodeName(Opcode) << "\n";
<< ((isa<ICmpInst>(Op0)||isa<ICmpInst>(Op1)) ?
Instruction::getOpcodeName(Instruction::ICmp) :
Instruction::getOpcodeName(Opcode))
<< "\n";
Op1R.print(*cerr.stream());
return;
}
@@ -964,11 +988,11 @@ void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) {
// value produced by this instruction
//
void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) {
if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
// See if we can figure out a result for this instruction...
Relation::KnownResult Result = getSetCCResult(SCI, RI);
Relation::KnownResult Result = getCmpResult(CI, RI);
if (Result != Relation::Unknown) {
PropagateEquality(SCI, ConstantBool::get(Result != 0), RI);
PropagateEquality(CI, ConstantBool::get(Result != 0), RI);
}
}
}
@@ -1002,7 +1026,14 @@ void CEE::ComputeReplacements(RegionInfo &RI) {
// Loop over the relationships known about Op0.
const std::vector<Relation> &Relationships = VI.getRelationships();
for (unsigned i = 0, e = Relationships.size(); i != e; ++i)
if (Relationships[i].getRelation() == Instruction::SetEQ) {
if (Relationships[i].getRelation() == FCmpInst::FCMP_OEQ) {
unsigned R = getRank(Relationships[i].getValue());
if (R < MinRank) {
MinRank = R;
Replacement = Relationships[i].getValue();
}
}
else if (Relationships[i].getRelation() == ICmpInst::ICMP_EQ) {
unsigned R = getRank(Relationships[i].getValue());
if (R < MinRank) {
MinRank = R;
@@ -1028,16 +1059,17 @@ bool CEE::SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI) {
// Convert instruction arguments to canonical forms...
Changed |= SimplifyInstruction(Inst, RI);
if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
// Try to simplify a setcc instruction based on inherited information
Relation::KnownResult Result = getSetCCResult(SCI, RI);
Relation::KnownResult Result = getCmpResult(CI, RI);
if (Result != Relation::Unknown) {
DOUT << "Replacing setcc with " << Result << " constant: " << *SCI;
DEBUG(cerr << "Replacing icmp with " << Result
<< " constant: " << *CI);
SCI->replaceAllUsesWith(ConstantBool::get((bool)Result));
CI->replaceAllUsesWith(ConstantBool::get((bool)Result));
// The instruction is now dead, remove it from the program.
SCI->getParent()->getInstList().erase(SCI);
++NumSetCCRemoved;
CI->getParent()->getInstList().erase(CI);
++NumCmpRemoved;
Changed = true;
}
}
@@ -1069,33 +1101,35 @@ bool CEE::SimplifyInstruction(Instruction *I, const RegionInfo &RI) {
return Changed;
}
// getSetCCResult - Try to simplify a setcc instruction based on information
// inherited from a dominating setcc instruction. V is one of the operands to
// the setcc instruction, and VI is the set of information known about it. We
// getCmpResult - Try to simplify a cmp instruction based on information
// inherited from a dominating icmp instruction. V is one of the operands to
// the icmp instruction, and VI is the set of information known about it. We
// take two cases into consideration here. If the comparison is against a
// constant value, we can use the constant range to see if the comparison is
// possible to succeed. If it is not a comparison against a constant, we check
// to see if there is a known relationship between the two values. If so, we
// may be able to eliminate the check.
//
Relation::KnownResult CEE::getSetCCResult(SetCondInst *SCI,
const RegionInfo &RI) {
Value *Op0 = SCI->getOperand(0), *Op1 = SCI->getOperand(1);
Instruction::BinaryOps Opcode = SCI->getOpcode();
Relation::KnownResult CEE::getCmpResult(CmpInst *CI,
const RegionInfo &RI) {
Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
unsigned short predicate = CI->getPredicate();
if (isa<Constant>(Op0)) {
if (isa<Constant>(Op1)) {
if (Constant *Result = ConstantFoldInstruction(SCI)) {
// Wow, this is easy, directly eliminate the SetCondInst.
DOUT << "Replacing setcc with constant fold: " << *SCI;
if (Constant *Result = ConstantFoldInstruction(CI)) {
// Wow, this is easy, directly eliminate the ICmpInst.
DEBUG(cerr << "Replacing cmp with constant fold: " << *CI);
return cast<ConstantBool>(Result)->getValue()
? Relation::KnownTrue : Relation::KnownFalse;
}
} else {
// We want to swap this instruction so that operand #0 is the constant.
std::swap(Op0, Op1);
Opcode = SCI->getSwappedCondition();
if (isa<ICmpInst>(CI))
predicate = cast<ICmpInst>(CI)->getSwappedPredicate();
else
predicate = cast<FCmpInst>(CI)->getSwappedPredicate();
}
}
@@ -1107,12 +1141,13 @@ Relation::KnownResult CEE::getSetCCResult(SetCondInst *SCI,
// At this point, we know that if we have a constant argument that it is in
// Op1. Check to see if we know anything about comparing value with a
// constant, and if we can use this info to fold the setcc.
// constant, and if we can use this info to fold the icmp.
//
if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Op1)) {
// Check to see if we already know the result of this comparison...
ConstantRange R = ConstantRange(Opcode, C);
ConstantRange Int = R.intersectWith(Op0VI->getBounds());
ConstantRange R = ConstantRange(predicate, C);
ConstantRange Int = R.intersectWith(Op0VI->getBounds(),
ICmpInst::isSignedPredicate(ICmpInst::Predicate(predicate)));
// If the intersection of the two ranges is empty, then the condition
// could never be true!
@@ -1134,7 +1169,7 @@ Relation::KnownResult CEE::getSetCCResult(SetCondInst *SCI,
//
// Do we have value information about Op0 and a relation to Op1?
if (const Relation *Op2R = Op0VI->requestRelation(Op1))
Result = Op2R->getImpliedResult(Opcode);
Result = Op2R->getImpliedResult(predicate);
}
}
return Result;
@@ -1147,7 +1182,7 @@ Relation::KnownResult CEE::getSetCCResult(SetCondInst *SCI,
// contradicts - Return true if the relationship specified by the operand
// contradicts already known information.
//
bool Relation::contradicts(Instruction::BinaryOps Op,
bool Relation::contradicts(unsigned Op,
const ValueInfo &VI) const {
assert (Op != Instruction::Add && "Invalid relation argument!");
@@ -1155,24 +1190,48 @@ bool Relation::contradicts(Instruction::BinaryOps Op,
// does not contradict properties known about the bounds of the constant.
//
if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Val))
if (ConstantRange(Op, C).intersectWith(VI.getBounds()).isEmptySet())
return true;
if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&
Op <= ICmpInst::LAST_ICMP_PREDICATE)
if (ConstantRange(Op, C).intersectWith(VI.getBounds(),
ICmpInst::isSignedPredicate(ICmpInst::Predicate(Op))).isEmptySet())
return true;
switch (Rel) {
default: assert(0 && "Unknown Relationship code!");
case Instruction::Add: return false; // Nothing known, nothing contradicts
case Instruction::SetEQ:
return Op == Instruction::SetLT || Op == Instruction::SetGT ||
Op == Instruction::SetNE;
case Instruction::SetNE: return Op == Instruction::SetEQ;
case Instruction::SetLE: return Op == Instruction::SetGT;
case Instruction::SetGE: return Op == Instruction::SetLT;
case Instruction::SetLT:
return Op == Instruction::SetEQ || Op == Instruction::SetGT ||
Op == Instruction::SetGE;
case Instruction::SetGT:
return Op == Instruction::SetEQ || Op == Instruction::SetLT ||
Op == Instruction::SetLE;
case ICmpInst::ICMP_EQ:
return Op == ICmpInst::ICMP_ULT || Op == ICmpInst::ICMP_SLT ||
Op == ICmpInst::ICMP_UGT || Op == ICmpInst::ICMP_SGT ||
Op == ICmpInst::ICMP_NE;
case ICmpInst::ICMP_NE: return Op == ICmpInst::ICMP_EQ;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE: return Op == ICmpInst::ICMP_UGT ||
Op == ICmpInst::ICMP_SGT;
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE: return Op == ICmpInst::ICMP_ULT ||
Op == ICmpInst::ICMP_SLT;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
return Op == ICmpInst::ICMP_EQ || Op == ICmpInst::ICMP_UGT ||
Op == ICmpInst::ICMP_SGT || Op == ICmpInst::ICMP_UGE ||
Op == ICmpInst::ICMP_SGE;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
return Op == ICmpInst::ICMP_EQ || Op == ICmpInst::ICMP_ULT ||
Op == ICmpInst::ICMP_SLT || Op == ICmpInst::ICMP_ULE ||
Op == ICmpInst::ICMP_SLE;
case FCmpInst::FCMP_OEQ:
return Op == FCmpInst::FCMP_OLT || Op == FCmpInst::FCMP_OGT ||
Op == FCmpInst::FCMP_ONE;
case FCmpInst::FCMP_ONE: return Op == FCmpInst::FCMP_OEQ;
case FCmpInst::FCMP_OLE: return Op == FCmpInst::FCMP_OGT;
case FCmpInst::FCMP_OGE: return Op == FCmpInst::FCMP_OLT;
case FCmpInst::FCMP_OLT:
return Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OGT ||
Op == FCmpInst::FCMP_OGE;
case FCmpInst::FCMP_OGT:
return Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OLT ||
Op == FCmpInst::FCMP_OLE;
}
}
@@ -1181,7 +1240,7 @@ bool Relation::contradicts(Instruction::BinaryOps Op,
// new information is gained, true is returned, otherwise false is returned to
// indicate that nothing was updated.
//
bool Relation::incorporate(Instruction::BinaryOps Op, ValueInfo &VI) {
bool Relation::incorporate(unsigned Op, ValueInfo &VI) {
assert(!contradicts(Op, VI) &&
"Cannot incorporate contradictory information!");
@@ -1189,30 +1248,64 @@ bool Relation::incorporate(Instruction::BinaryOps Op, ValueInfo &VI) {
// range that is possible for the value to have...
//
if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Val))
VI.getBounds() = ConstantRange(Op, C).intersectWith(VI.getBounds());
if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&
Op <= ICmpInst::LAST_ICMP_PREDICATE)
VI.getBounds() = ConstantRange(Op, C).intersectWith(VI.getBounds(),
ICmpInst::isSignedPredicate(ICmpInst::Predicate(Op)));
switch (Rel) {
default: assert(0 && "Unknown prior value!");
case Instruction::Add: Rel = Op; return true;
case Instruction::SetEQ: return false; // Nothing is more precise
case Instruction::SetNE: return false; // Nothing is more precise
case Instruction::SetLT: return false; // Nothing is more precise
case Instruction::SetGT: return false; // Nothing is more precise
case Instruction::SetLE:
if (Op == Instruction::SetEQ || Op == Instruction::SetLT) {
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT: return false; // Nothing is more precise
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE:
if (Op == ICmpInst::ICMP_EQ || Op == ICmpInst::ICMP_ULT ||
Op == ICmpInst::ICMP_SLT) {
Rel = Op;
return true;
} else if (Op == Instruction::SetNE) {
Rel = Instruction::SetLT;
} else if (Op == ICmpInst::ICMP_NE) {
Rel = Rel == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_ULT :
ICmpInst::ICMP_SLT;
return true;
}
return false;
case Instruction::SetGE: return Op == Instruction::SetLT;
if (Op == Instruction::SetEQ || Op == Instruction::SetGT) {
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE:
if (Op == ICmpInst::ICMP_EQ || ICmpInst::ICMP_UGT ||
Op == ICmpInst::ICMP_SGT) {
Rel = Op;
return true;
} else if (Op == Instruction::SetNE) {
Rel = Instruction::SetGT;
} else if (Op == ICmpInst::ICMP_NE) {
Rel = Rel == ICmpInst::ICMP_UGE ? ICmpInst::ICMP_UGT :
ICmpInst::ICMP_SGT;
return true;
}
return false;
case FCmpInst::FCMP_OEQ: return false; // Nothing is more precise
case FCmpInst::FCMP_ONE: return false; // Nothing is more precise
case FCmpInst::FCMP_OLT: return false; // Nothing is more precise
case FCmpInst::FCMP_OGT: return false; // Nothing is more precise
case FCmpInst::FCMP_OLE:
if (Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OLT) {
Rel = Op;
return true;
} else if (Op == FCmpInst::FCMP_ONE) {
Rel = FCmpInst::FCMP_OLT;
return true;
}
return false;
case FCmpInst::FCMP_OGE:
return Op == FCmpInst::FCMP_OLT;
if (Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OGT) {
Rel = Op;
return true;
} else if (Op == FCmpInst::FCMP_ONE) {
Rel = FCmpInst::FCMP_OGT;
return true;
}
return false;
@@ -1224,28 +1317,67 @@ bool Relation::incorporate(Instruction::BinaryOps Op, ValueInfo &VI) {
// determine the result required, return Unknown.
//
Relation::KnownResult
Relation::getImpliedResult(Instruction::BinaryOps Op) const {
Relation::getImpliedResult(unsigned Op) const {
if (Rel == Op) return KnownTrue;
if (Rel == SetCondInst::getInverseCondition(Op)) return KnownFalse;
if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&
Op <= ICmpInst::LAST_ICMP_PREDICATE) {
if (Rel == unsigned(ICmpInst::getInversePredicate(ICmpInst::Predicate(Op))))
return KnownFalse;
} else if (Op <= FCmpInst::LAST_FCMP_PREDICATE) {
if (Rel == unsigned(FCmpInst::getInversePredicate(FCmpInst::Predicate(Op))))
return KnownFalse;
}
switch (Rel) {
default: assert(0 && "Unknown prior value!");
case Instruction::SetEQ:
if (Op == Instruction::SetLE || Op == Instruction::SetGE) return KnownTrue;
if (Op == Instruction::SetLT || Op == Instruction::SetGT) return KnownFalse;
case ICmpInst::ICMP_EQ:
if (Op == ICmpInst::ICMP_ULE || Op == ICmpInst::ICMP_SLE ||
Op == ICmpInst::ICMP_UGE || Op == ICmpInst::ICMP_SGE) return KnownTrue;
if (Op == ICmpInst::ICMP_ULT || Op == ICmpInst::ICMP_SLT ||
Op == ICmpInst::ICMP_UGT || Op == ICmpInst::ICMP_SGT) return KnownFalse;
break;
case Instruction::SetLT:
if (Op == Instruction::SetNE || Op == Instruction::SetLE) return KnownTrue;
if (Op == Instruction::SetEQ) return KnownFalse;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
if (Op == ICmpInst::ICMP_ULE || Op == ICmpInst::ICMP_SLE ||
Op == ICmpInst::ICMP_NE) return KnownTrue;
if (Op == ICmpInst::ICMP_EQ) return KnownFalse;
break;
case Instruction::SetGT:
if (Op == Instruction::SetNE || Op == Instruction::SetGE) return KnownTrue;
if (Op == Instruction::SetEQ) return KnownFalse;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
if (Op == ICmpInst::ICMP_UGE || Op == ICmpInst::ICMP_SGE ||
Op == ICmpInst::ICMP_NE) return KnownTrue;
if (Op == ICmpInst::ICMP_EQ) return KnownFalse;
break;
case Instruction::SetNE:
case Instruction::SetLE:
case Instruction::SetGE:
case Instruction::Add:
case FCmpInst::FCMP_OEQ:
if (Op == FCmpInst::FCMP_OLE || Op == FCmpInst::FCMP_OGE) return KnownTrue;
if (Op == FCmpInst::FCMP_OLT || Op == FCmpInst::FCMP_OGT) return KnownFalse;
break;
case FCmpInst::FCMP_OLT:
if (Op == FCmpInst::FCMP_ONE || Op == FCmpInst::FCMP_OLE) return KnownTrue;
if (Op == FCmpInst::FCMP_OEQ) return KnownFalse;
break;
case FCmpInst::FCMP_OGT:
if (Op == FCmpInst::FCMP_ONE || Op == FCmpInst::FCMP_OGE) return KnownTrue;
if (Op == FCmpInst::FCMP_OEQ) return KnownFalse;
break;
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE:
case FCmpInst::FCMP_ONE:
case FCmpInst::FCMP_OLE:
case FCmpInst::FCMP_OGE:
case FCmpInst::FCMP_FALSE:
case FCmpInst::FCMP_ORD:
case FCmpInst::FCMP_UNO:
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_ULT:
case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_UNE:
case FCmpInst::FCMP_TRUE:
break;
}
return Unknown;
@@ -1298,12 +1430,30 @@ void Relation::print(std::ostream &OS) const {
OS << " is ";
switch (Rel) {
default: OS << "*UNKNOWN*"; break;
case Instruction::SetEQ: OS << "== "; break;
case Instruction::SetNE: OS << "!= "; break;
case Instruction::SetLT: OS << "< "; break;
case Instruction::SetGT: OS << "> "; break;
case Instruction::SetLE: OS << "<= "; break;
case Instruction::SetGE: OS << ">= "; break;
case ICmpInst::ICMP_EQ:
case FCmpInst::FCMP_ORD:
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_OEQ: OS << "== "; break;
case ICmpInst::ICMP_NE:
case FCmpInst::FCMP_UNO:
case FCmpInst::FCMP_UNE:
case FCmpInst::FCMP_ONE: OS << "!= "; break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
case FCmpInst::FCMP_ULT:
case FCmpInst::FCMP_OLT: OS << "< "; break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_OGT: OS << "> "; break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE:
case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_OLE: OS << "<= "; break;
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE:
case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_OGE: OS << ">= "; break;
}
WriteAsOperand(OS, Val);