minor corrections

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2971 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Anand Shukla
2002-07-18 20:56:47 +00:00
parent e221976b37
commit e617f92741
6 changed files with 188 additions and 140 deletions

View File

@@ -338,6 +338,9 @@ void insertBB(Edge ed,
//then we need to change branch destinations to include new BB //then we need to change branch destinations to include new BB
//std::cerr<<"before cast!\n"; //std::cerr<<"before cast!\n";
std::cerr<<"Method no in Edgecode:"<<Methno<<"\n";
std::cerr<<"Instruction\n";
std::cerr<<*TI;
BranchInst *BI = cast<BranchInst>(TI); BranchInst *BI = cast<BranchInst>(TI);
if(BI->isUnconditional()){ if(BI->isUnconditional()){

View File

@@ -6,6 +6,7 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/Graph.h" #include "llvm/Transforms/Instrumentation/Graph.h"
#include "llvm/iTerminators.h"
#include "llvm/BasicBlock.h" #include "llvm/BasicBlock.h"
#include <algorithm> #include <algorithm>
#include <iostream> #include <iostream>
@@ -50,14 +51,48 @@ Graph::Graph(std::vector<Node*> n, std::vector<Edge> e,
} }
//sorting edgelist, called by backEdgeVist ONLY!!!
Graph::nodeList &Graph::sortNodeList(Node *par, nodeList &nl){
assert(par && "null node pointer");
BasicBlock *bbPar = par->getElement();
if(nl.size()<=1) return nl;
for(nodeList::iterator NLI = nl.begin(), NLE = nl.end()-1; NLI != NLE; ++NLI){
nodeList::iterator min = NLI;
for(nodeList::iterator LI = NLI+1, LE = nl.end(); LI!=LE; ++LI){
//if LI < min, min = LI
if(min->element->getElement() == LI->element->getElement())
continue;
TerminatorInst *tti = par->getElement()->getTerminator();
BranchInst *ti = cast<BranchInst>(tti);
assert(ti && "not a branch");
assert(ti->getNumSuccessors()==2 && "less successors!");
BasicBlock *tB = ti->getSuccessor(0);
BasicBlock *fB = ti->getSuccessor(1);
if(tB == LI->element->getElement() || fB == min->element->getElement())
min = LI;
}
graphListElement tmpElmnt = *min;
*min = *NLI;
*NLI = tmpElmnt;
}
return nl;
}
//check whether graph has an edge //check whether graph has an edge
//having an edge simply means that there is an edge in the graph //having an edge simply means that there is an edge in the graph
//which has same endpoints as the given edge //which has same endpoints as the given edge
bool Graph::hasEdge(Edge ed) const{ bool Graph::hasEdge(Edge ed){
if(ed.isNull()) if(ed.isNull())
return false; return false;
nodeList nli=getNodeList(ed.getFirst()); nodeList &nli= nodes[ed.getFirst()]; //getNodeList(ed.getFirst());
Node *nd2=ed.getSecond(); Node *nd2=ed.getSecond();
return (findNodeInList(nli,nd2)!=NULL); return (findNodeInList(nli,nd2)!=NULL);
@@ -69,12 +104,12 @@ bool Graph::hasEdge(Edge ed) const{
//having an edge simply means that there is an edge in the graph //having an edge simply means that there is an edge in the graph
//which has same endpoints as the given edge //which has same endpoints as the given edge
//This function checks, moreover, that the wt of edge matches too //This function checks, moreover, that the wt of edge matches too
bool Graph::hasEdgeAndWt(Edge ed) const{ bool Graph::hasEdgeAndWt(Edge ed){
if(ed.isNull()) if(ed.isNull())
return false; return false;
Node *nd2=ed.getSecond(); Node *nd2=ed.getSecond();
nodeList nli=getNodeList(ed.getFirst()); nodeList nli = nodes[ed.getFirst()];//getNodeList(ed.getFirst());
for(nodeList::iterator NI=nli.begin(), NE=nli.end(); NI!=NE; ++NI) for(nodeList::iterator NI=nli.begin(), NE=nli.end(); NI!=NE; ++NI)
if(*NI->element == *nd2 && ed.getWeight()==NI->weight) if(*NI->element == *nd2 && ed.getWeight()==NI->weight)
@@ -109,6 +144,7 @@ void Graph::addEdge(Edge ed, int w){
//ndList.push_front(graphListElement(nd2,w, ed.getRandId())); //ndList.push_front(graphListElement(nd2,w, ed.getRandId()));
ndList.push_back(graphListElement(nd2,w, ed.getRandId()));//chng ndList.push_back(graphListElement(nd2,w, ed.getRandId()));//chng
//sortNodeList(ed.getFirst(), ndList);
//sort(ndList.begin(), ndList.end(), NodeListSort()); //sort(ndList.begin(), ndList.end(), NodeListSort());
} }
@@ -123,6 +159,7 @@ void Graph::addEdgeForce(Edge ed){
nodes[ed.getFirst()].push_back nodes[ed.getFirst()].push_back
(graphListElement(ed.getSecond(), ed.getWeight(), ed.getRandId())); (graphListElement(ed.getSecond(), ed.getWeight(), ed.getRandId()));
//sortNodeList(ed.getFirst(), nodes[ed.getFirst()]);
//sort(nodes[ed.getFirst()].begin(), nodes[ed.getFirst()].end(), NodeListSort()); //sort(nodes[ed.getFirst()].begin(), nodes[ed.getFirst()].end(), NodeListSort());
} }
@@ -166,10 +203,10 @@ void Graph::setWeight(Edge ed){
//get the list of successor nodes //get the list of successor nodes
vector<Node *> Graph::getSuccNodes(Node *nd) const { vector<Node *> Graph::getSuccNodes(Node *nd){
nodeMapTy::const_iterator nli = nodes.find(nd); nodeMapTy::const_iterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map"); assert(nli != nodes.end() && "Node must be in nodes map");
const nodeList &nl = nli->second; const nodeList &nl = getNodeList(nd);//getSortedNodeList(nd);
vector<Node *> lt; vector<Node *> lt;
for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI) for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
@@ -192,7 +229,7 @@ int Graph::getNumberOfOutgoingEdges(Node *nd) const {
} }
//get the list of predecessor nodes //get the list of predecessor nodes
vector<Node *> Graph::getPredNodes(Node *nd) const{ vector<Node *> Graph::getPredNodes(Node *nd){
vector<Node *> lt; vector<Node *> lt;
for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){ for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
Node *lnode=EI->first; Node *lnode=EI->first;
@@ -205,7 +242,7 @@ vector<Node *> Graph::getPredNodes(Node *nd) const{
} }
//get the number of predecessor nodes //get the number of predecessor nodes
int Graph::getNumberOfIncomingEdges(Node *nd) const{ int Graph::getNumberOfIncomingEdges(Node *nd){
int count=0; int count=0;
for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){ for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
Node *lnode=EI->first; Node *lnode=EI->first;
@@ -371,20 +408,27 @@ void Graph::printGraph(){
//get a list of nodes in the graph //get a list of nodes in the graph
//in r-topological sorted order //in r-topological sorted order
//note that we assumed graph to be connected //note that we assumed graph to be connected
vector<Node *> Graph::reverseTopologicalSort() const{ vector<Node *> Graph::reverseTopologicalSort(){
vector <Node *> toReturn; vector <Node *> toReturn;
vector<Node *> lt=getAllNodes(); vector<Node *> lt=getAllNodes();
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){ for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK) if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
DFS_Visit(*LI, toReturn); DFS_Visit(*LI, toReturn);
} }
//print nodes
//std::cerr<<"Topological sort--------\n";
//for(vector<Node *>::iterator VI = toReturn.begin(), VE = toReturn.end();
// VI!=VE; ++VI)
//std::cerr<<(*VI)->getElement()->getName()<<"->";
//std::cerr<<"\n----------------------\n";
return toReturn; return toReturn;
} }
//a private method for doing DFS traversal of graph //a private method for doing DFS traversal of graph
//this is used in determining the reverse topological sort //this is used in determining the reverse topological sort
//of the graph //of the graph
void Graph::DFS_Visit(Node *nd, vector<Node *> &toReturn) const { void Graph::DFS_Visit(Node *nd, vector<Node *> &toReturn){
nd->setWeight(GREY); nd->setWeight(GREY);
vector<Node *> lt=getSuccNodes(nd); vector<Node *> lt=getSuccNodes(nd);
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){ for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
@@ -441,38 +485,48 @@ void Graph::reverseWts(){
//have been visited //have been visited
//So we have a back edge when we meet a successor of //So we have a back edge when we meet a successor of
//a node with smaller time, and GREY color //a node with smaller time, and GREY color
void Graph::getBackEdges(vector<Edge > &be) const{ void Graph::getBackEdges(vector<Edge > &be, map<Node *, int> &d){
map<Node *, Color > color; map<Node *, Color > color;
map<Node *, int > d; //map<Node *, int > d;
vector<Node *> allNodes=getAllNodes(); //vector<Node *> allNodes=getAllNodes();
int time=0; int time=0;
for(vector<Node *>::const_iterator NI=allNodes.begin(), NE=allNodes.end(); //for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end();
NI!=NE; ++NI){ // NI!=NE; ++NI){
if(color[*NI]!=GREY && color[*NI]!=BLACK) //if(color[*NI]!=GREY && color[*NI]!=BLACK)
getBackEdgesVisit(*NI, be, color, d, time); //printGraph();
} getBackEdgesVisit(getRoot(), be, color, d, time);//*NI, be, color, d, time);
//}
} }
//helper function to get back edges: it is called by //helper function to get back edges: it is called by
//the "getBackEdges" function above //the "getBackEdges" function above
void Graph::getBackEdgesVisit(Node *u, vector<Edge > &be, void Graph::getBackEdgesVisit(Node *u, vector<Edge > &be,
map<Node *, Color > &color, map<Node *, Color > &color,
map<Node *, int > &d, int &time) const{ map<Node *, int > &d, int &time) {
color[u]=GREY; color[u]=GREY;
time++; time++;
d[u]=time; d[u]=time;
vector<graphListElement> succ_list=getNodeList(u); //std::cerr<<"Node list-----\n";
for(vector<graphListElement>::const_iterator vl=succ_list.begin(), vector<graphListElement> succ_list = getSortedNodeList(u);
//for(vector<graphListElement>::iterator vl=succ_list.begin(),
// ve=succ_list.end(); vl!=ve; ++vl){
//Node *v=vl->element;
//std::cerr<<v->getElement()->getName()<<"->";
//}
//std::cerr<<"\n-------- end Node list\n";
for(vector<graphListElement>::iterator vl=succ_list.begin(),
ve=succ_list.end(); vl!=ve; ++vl){ ve=succ_list.end(); vl!=ve; ++vl){
Node *v=vl->element; Node *v=vl->element;
// for(vector<Node *>::const_iterator v=succ_list.begin(), ve=succ_list.end(); // for(vector<Node *>::const_iterator v=succ_list.begin(), ve=succ_list.end();
// v!=ve; ++v){ // v!=ve; ++v){
if(color[v]!=GREY && color[v]!=BLACK){ if(color[v]!=GREY && color[v]!=BLACK){
getBackEdgesVisit(v, be, color, d, time); getBackEdgesVisit(v, be, color, d, time);
} }
//now checking for d and f vals //now checking for d and f vals
if(color[v]==GREY){ if(color[v]==GREY){
//so v is ancestor of u if time of u > time of v //so v is ancestor of u if time of u > time of v

View File

@@ -12,19 +12,14 @@
#include "Support/StatisticReporter.h" #include "Support/StatisticReporter.h"
#include <map> #include <map>
//#include <list>
//#include <set>
#include <vector> #include <vector>
#include <cstdlib> #include <cstdlib>
#include "llvm/BasicBlock.h" #include "llvm/BasicBlock.h"
class BasicBlock; class BasicBlock;
//class Method;
class Module; class Module;
//=======
class Function; class Function;
//>>>>>>> 1.4
class Instruction; class Instruction;
//Class Node //Class Node
@@ -43,7 +38,7 @@ public:
inline bool operator<(Node& nd) const { return element<nd.element; } inline bool operator<(Node& nd) const { return element<nd.element; }
inline bool operator==(Node& nd) const { return element==nd.element; } inline bool operator==(Node& nd) const { return element==nd.element; }
}; };
////////////////////////
//Class Edge //Class Edge
//Denotes an edge in the graph //Denotes an edge in the graph
@@ -102,7 +97,7 @@ public:
inline bool operator!=(const Edge& ed) const{return !(*this==ed);} inline bool operator!=(const Edge& ed) const{return !(*this==ed);}
}; };
////////////////////////
//graphListElement //graphListElement
//This forms the "adjacency list element" of a //This forms the "adjacency list element" of a
@@ -117,7 +112,7 @@ struct graphListElement{
randId=rand; randId=rand;
} }
}; };
/////////////////////////
namespace std { namespace std {
struct less<Node *> : public binary_function<Node *, Node *,bool> { struct less<Node *> : public binary_function<Node *, Node *,bool> {
@@ -167,7 +162,7 @@ struct EdgeCompare{
} }
}; };
////////////////////
//this is used to color vertices //this is used to color vertices
//during DFS //during DFS
@@ -205,7 +200,7 @@ private:
//a private method for doing DFS traversal of graph //a private method for doing DFS traversal of graph
//this is used in determining the reverse topological sort //this is used in determining the reverse topological sort
//of the graph //of the graph
void DFS_Visit(Node *nd, std::vector<Node *> &toReturn) const; void DFS_Visit(Node *nd, std::vector<Node *> &toReturn);
//Its a variation of DFS to get the backedges in the graph //Its a variation of DFS to get the backedges in the graph
//We get back edges by associating a time //We get back edges by associating a time
@@ -221,7 +216,7 @@ private:
std::vector<Edge > &be, std::vector<Edge > &be,
std::map<Node *, Color> &clr, std::map<Node *, Color> &clr,
std::map<Node *, int> &d, std::map<Node *, int> &d,
int &time) const; int &time);
public: public:
typedef nodeMapTy::iterator elementIterator; typedef nodeMapTy::iterator elementIterator;
@@ -269,23 +264,23 @@ public:
//having an edge simply means that there is an edge in the graph //having an edge simply means that there is an edge in the graph
//which has same endpoints as the given edge //which has same endpoints as the given edge
//it may possibly have different weight though //it may possibly have different weight though
bool hasEdge(Edge ed) const; bool hasEdge(Edge ed);
//check whether graph has an edge, with a given wt //check whether graph has an edge, with a given wt
bool hasEdgeAndWt(Edge ed) const; bool hasEdgeAndWt(Edge ed);
//get the list of successor nodes //get the list of successor nodes
std::vector<Node *> getSuccNodes(Node *nd) const; std::vector<Node *> getSuccNodes(Node *nd);
//get the number of outgoing edges //get the number of outgoing edges
int getNumberOfOutgoingEdges(Node *nd) const; int getNumberOfOutgoingEdges(Node *nd) const;
//get the list of predecessor nodes //get the list of predecessor nodes
std::vector<Node *> getPredNodes(Node *nd) const; std::vector<Node *> getPredNodes(Node *nd);
//to get the no of incoming edges //to get the no of incoming edges
int getNumberOfIncomingEdges(Node *nd) const; int getNumberOfIncomingEdges(Node *nd);
//get the list of all the vertices in graph //get the list of all the vertices in graph
std::vector<Node *> getAllNodes() const; std::vector<Node *> getAllNodes() const;
@@ -294,7 +289,7 @@ public:
//get a list of nodes in the graph //get a list of nodes in the graph
//in r-topological sorted order //in r-topological sorted order
//note that we assumed graph to be connected //note that we assumed graph to be connected
std::vector<Node *> reverseTopologicalSort() const; std::vector<Node *> reverseTopologicalSort();
//reverse the sign of weights on edges //reverse the sign of weights on edges
//this way, max-spanning tree could be obtained //this way, max-spanning tree could be obtained
@@ -312,7 +307,9 @@ public:
void printGraph(); void printGraph();
//get a vector of back edges in the graph //get a vector of back edges in the graph
void getBackEdges(std::vector<Edge> &be) const; void getBackEdges(std::vector<Edge> &be, std::map<Node *, int> &d);
nodeList &sortNodeList(Node *par, nodeList &nl);
//Get the Maximal spanning tree (also a graph) //Get the Maximal spanning tree (also a graph)
//of the graph //of the graph
@@ -321,18 +318,18 @@ public:
//get the nodeList adjacent to a node //get the nodeList adjacent to a node
//a nodeList element contains a node, and the weight //a nodeList element contains a node, and the weight
//corresponding to the edge for that element //corresponding to the edge for that element
inline const nodeList &getNodeList(Node *nd) const {
constElementIterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
return nli->second;
}
inline nodeList &getNodeList(Node *nd) { inline nodeList &getNodeList(Node *nd) {
elementIterator nli = nodes.find(nd); elementIterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map"); assert(nli != nodes.end() && "Node must be in nodes map");
return nli->second; return nodes[nd];//sortNodeList(nd, nli->second);
} }
nodeList &getSortedNodeList(Node *nd) {
elementIterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
return sortNodeList(nd, nodes[nd]);
}
//get the root of the graph //get the root of the graph
inline Node *getRoot() {return strt; } inline Node *getRoot() {return strt; }
inline Node * const getRoot() const {return strt; } inline Node * const getRoot() const {return strt; }
@@ -409,12 +406,8 @@ public:
//get the code to be inserted on the edge //get the code to be inserted on the edge
//This is determined from cond (1-6) //This is determined from cond (1-6)
//<<<<<<< Graph.h
void getCode(Instruction *a, Instruction *b, Function *M, BasicBlock *BB, void getCode(Instruction *a, Instruction *b, Function *M, BasicBlock *BB,
int numPaths, int MethNo); int numPaths, int MethNo);
//=======
//void getCode(Instruction *a, Instruction *b, Function *F, BasicBlock *BB);
//>>>>>>> 1.4
}; };
@@ -426,7 +419,7 @@ void printEdge(Edge ed);
//Do graph processing: to determine minimal edge increments, //Do graph processing: to determine minimal edge increments,
//appropriate code insertions etc and insert the code at //appropriate code insertions etc and insert the code at
//appropriate locations //appropriate locations
void processGraph(Graph &g, Instruction *rInst, Instruction *countInst, std::vector<Edge> &be, std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, int n); void processGraph(Graph &g, Instruction *rInst, Instruction *countInst, std::vector<Edge> &be, std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, int n, int MethNo);
//print the graph (for debugging) //print the graph (for debugging)
void printGraph(Graph &g); void printGraph(Graph &g);
@@ -457,7 +450,7 @@ void addDummyEdges(std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, Graph
//such that if we traverse along any path from root to exit, and //such that if we traverse along any path from root to exit, and
//add up the edge values, we get a path number that uniquely //add up the edge values, we get a path number that uniquely
//refers to the path we travelled //refers to the path we travelled
int valueAssignmentToEdges(Graph& g); int valueAssignmentToEdges(Graph& g, std::map<Node *, int> nodePriority);
void getBBtrace(std::vector<BasicBlock *> &vBB, int pathNo, Function *M); void getBBtrace(std::vector<BasicBlock *> &vBB, int pathNo, Function *M);
#endif #endif

View File

@@ -12,6 +12,7 @@
#include "llvm/BasicBlock.h" #include "llvm/BasicBlock.h"
#include "llvm/InstrTypes.h" #include "llvm/InstrTypes.h"
#include "llvm/Transforms/Instrumentation/Graph.h" #include "llvm/Transforms/Instrumentation/Graph.h"
#include "llvm/iTerminators.h"
#include <algorithm> #include <algorithm>
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>
@@ -68,7 +69,7 @@ static void removeTreeEdges(Graph &g, Graph& t){
//such that if we traverse along any path from root to exit, and //such that if we traverse along any path from root to exit, and
//add up the edge values, we get a path number that uniquely //add up the edge values, we get a path number that uniquely
//refers to the path we travelled //refers to the path we travelled
int valueAssignmentToEdges(Graph& g){ int valueAssignmentToEdges(Graph& g, map<Node *, int> nodePriority){
vector<Node *> revtop=g.reverseTopologicalSort(); vector<Node *> revtop=g.reverseTopologicalSort();
map<Node *,int > NumPaths; map<Node *,int > NumPaths;
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end();
@@ -83,31 +84,36 @@ int valueAssignmentToEdges(Graph& g){
int sz=nlist.size(); int sz=nlist.size();
//printing BB list
//std::cerr<<"node list------------\n";
//for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end();
// NLI!=NLE; ++NLI)
//std::cerr<<NLI->element->getElement()->getName()<<"->";
//std::cerr<<"\n-----------\n";
for(int i=0;i<sz-1; i++){ for(int i=0;i<sz-1; i++){
int min=i; int min=i;
for(int j=i+1; j<sz; j++){ for(int j=i+1; j<sz; j++){
BasicBlock *bb1 = nlist[j].element->getElement(); BasicBlock *bb1 = nlist[j].element->getElement();
BasicBlock *bb2 = nlist[min].element->getElement(); BasicBlock *bb2 = nlist[min].element->getElement();
assert(bb1->getParent() == bb2->getParent() &&
"BBs with diff parents"); if(bb1 == bb2) continue;
TerminatorInst *ti = bb1->getTerminator();
if(*RI == g.getRoot()){
assert(nodePriority[nlist[min].element]!=
nodePriority[nlist[j].element]
&& "priorities can't be same!");
if(nodePriority[nlist[j].element] <
nodePriority[nlist[min].element])
min = j;
}
//compare the order of BBs in the terminator instruction else{
for(int x=0, y = ti->getNumSuccessors(); x < y; x++){ TerminatorInst *tti = (*RI)->getElement()->getTerminator();
if(ti->getSuccessor(x) == bb1){ //bb1 occurs first //std::cerr<<*tti<<std::endl;
BranchInst *ti = cast<BranchInst>(tti);
assert(ti && "not a branch");
assert(ti->getNumSuccessors()==2 && "less successors!");
BasicBlock *tB = ti->getSuccessor(0);
BasicBlock *fB = ti->getSuccessor(1);
if(tB == bb1 || fB == bb2)
min = j; min = j;
break;
}
if(ti->getSuccessor(x) == bb2) //bb2 occurs first
break;
} }
} }
@@ -117,11 +123,14 @@ int valueAssignmentToEdges(Graph& g){
} }
//sorted now! //sorted now!
//std::cerr<<"Considering Order-----\n";
for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end(); for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
GLI!=GLE; ++GLI){ GLI!=GLE; ++GLI){
//std::cerr<<GLI->element->getElement()->getName()<<"->";
GLI->weight=NumPaths[*RI]; GLI->weight=NumPaths[*RI];
NumPaths[*RI]+=NumPaths[GLI->element]; NumPaths[*RI]+=NumPaths[GLI->element];
} }
//std::cerr<<"\nend order $$$$$$$$$$$$$$$$$$$$$$$$\n";
} }
} }
return NumPaths[g.getRoot()]; return NumPaths[g.getRoot()];
@@ -474,10 +483,8 @@ void processGraph(Graph &g,
vector<Edge >& be, vector<Edge >& be,
vector<Edge >& stDummy, vector<Edge >& stDummy,
vector<Edge >& exDummy, vector<Edge >& exDummy,
int numPaths){ int numPaths, int MethNo){
static int MethNo=-1;
MethNo++;
//Given a graph: with exit->root edge, do the following in seq: //Given a graph: with exit->root edge, do the following in seq:
//1. get back edges //1. get back edges
//2. insert dummy edges and remove back edges //2. insert dummy edges and remove back edges

View File

@@ -12,6 +12,7 @@
#include "llvm/BasicBlock.h" #include "llvm/BasicBlock.h"
#include "llvm/InstrTypes.h" #include "llvm/InstrTypes.h"
#include "llvm/Transforms/Instrumentation/Graph.h" #include "llvm/Transforms/Instrumentation/Graph.h"
#include "llvm/iTerminators.h"
#include <algorithm> #include <algorithm>
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>
@@ -68,7 +69,7 @@ static void removeTreeEdges(Graph &g, Graph& t){
//such that if we traverse along any path from root to exit, and //such that if we traverse along any path from root to exit, and
//add up the edge values, we get a path number that uniquely //add up the edge values, we get a path number that uniquely
//refers to the path we travelled //refers to the path we travelled
int valueAssignmentToEdges(Graph& g){ int valueAssignmentToEdges(Graph& g, map<Node *, int> nodePriority){
vector<Node *> revtop=g.reverseTopologicalSort(); vector<Node *> revtop=g.reverseTopologicalSort();
map<Node *,int > NumPaths; map<Node *,int > NumPaths;
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end();
@@ -83,31 +84,36 @@ int valueAssignmentToEdges(Graph& g){
int sz=nlist.size(); int sz=nlist.size();
//printing BB list
//std::cerr<<"node list------------\n";
//for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end();
// NLI!=NLE; ++NLI)
//std::cerr<<NLI->element->getElement()->getName()<<"->";
//std::cerr<<"\n-----------\n";
for(int i=0;i<sz-1; i++){ for(int i=0;i<sz-1; i++){
int min=i; int min=i;
for(int j=i+1; j<sz; j++){ for(int j=i+1; j<sz; j++){
BasicBlock *bb1 = nlist[j].element->getElement(); BasicBlock *bb1 = nlist[j].element->getElement();
BasicBlock *bb2 = nlist[min].element->getElement(); BasicBlock *bb2 = nlist[min].element->getElement();
assert(bb1->getParent() == bb2->getParent() &&
"BBs with diff parents"); if(bb1 == bb2) continue;
TerminatorInst *ti = bb1->getTerminator();
if(*RI == g.getRoot()){
assert(nodePriority[nlist[min].element]!=
nodePriority[nlist[j].element]
&& "priorities can't be same!");
if(nodePriority[nlist[j].element] <
nodePriority[nlist[min].element])
min = j;
}
//compare the order of BBs in the terminator instruction else{
for(int x=0, y = ti->getNumSuccessors(); x < y; x++){ TerminatorInst *tti = (*RI)->getElement()->getTerminator();
if(ti->getSuccessor(x) == bb1){ //bb1 occurs first //std::cerr<<*tti<<std::endl;
BranchInst *ti = cast<BranchInst>(tti);
assert(ti && "not a branch");
assert(ti->getNumSuccessors()==2 && "less successors!");
BasicBlock *tB = ti->getSuccessor(0);
BasicBlock *fB = ti->getSuccessor(1);
if(tB == bb1 || fB == bb2)
min = j; min = j;
break;
}
if(ti->getSuccessor(x) == bb2) //bb2 occurs first
break;
} }
} }
@@ -117,11 +123,14 @@ int valueAssignmentToEdges(Graph& g){
} }
//sorted now! //sorted now!
//std::cerr<<"Considering Order-----\n";
for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end(); for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
GLI!=GLE; ++GLI){ GLI!=GLE; ++GLI){
//std::cerr<<GLI->element->getElement()->getName()<<"->";
GLI->weight=NumPaths[*RI]; GLI->weight=NumPaths[*RI];
NumPaths[*RI]+=NumPaths[GLI->element]; NumPaths[*RI]+=NumPaths[GLI->element];
} }
//std::cerr<<"\nend order $$$$$$$$$$$$$$$$$$$$$$$$\n";
} }
} }
return NumPaths[g.getRoot()]; return NumPaths[g.getRoot()];
@@ -474,10 +483,8 @@ void processGraph(Graph &g,
vector<Edge >& be, vector<Edge >& be,
vector<Edge >& stDummy, vector<Edge >& stDummy,
vector<Edge >& exDummy, vector<Edge >& exDummy,
int numPaths){ int numPaths, int MethNo){
static int MethNo=-1;
MethNo++;
//Given a graph: with exit->root edge, do the following in seq: //Given a graph: with exit->root edge, do the following in seq:
//1. get back edges //1. get back edges
//2. insert dummy edges and remove back edges //2. insert dummy edges and remove back edges

View File

@@ -70,10 +70,12 @@ bool ProfilePaths::runOnFunction(Function &F){
static int mn = -1; static int mn = -1;
if(F.size() <=1) { if(F.isExternal()) {
return false; return false;
} }
//std::cerr<<"Instrumenting\n-----------------\n";
//std::cerr<<F;
//increment counter for instrumented functions. mn is now function# //increment counter for instrumented functions. mn is now function#
mn++; mn++;
@@ -118,18 +120,25 @@ bool ProfilePaths::runOnFunction(Function &F){
Graph g(nodes,edges, startNode, exitNode); Graph g(nodes,edges, startNode, exitNode);
#ifdef DEBUG_PATH_PROFILES //#ifdef DEBUG_PATH_PROFILES
std::cerr<<"Original graph\n"; //std::cerr<<"Original graph\n";
printGraph(g); //printGraph(g);
#endif //#endif
BasicBlock *fr = &F.front(); BasicBlock *fr = &F.front();
// The graph is made acyclic: this is done // The graph is made acyclic: this is done
// by removing back edges for now, and adding them later on // by removing back edges for now, and adding them later on
vector<Edge> be; vector<Edge> be;
g.getBackEdges(be); std::map<Node *, int> nodePriority; //it ranks nodes in depth first order traversal
g.getBackEdges(be, nodePriority);
/*
std::cerr<<"Node priority--------------\n";
for(std::map<Node *, int>::iterator MI = nodePriority.begin(),
ME = nodePriority.end(); MI!=ME; ++MI)
std::cerr<<MI->first->getElement()->getName()<<"->"<<MI->second<<"\n";
std::cerr<<"End Node priority--------------\n";
*/
//std::cerr<<"BackEdges-------------\n"; //std::cerr<<"BackEdges-------------\n";
// for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){ // for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
//printEdge(*VI); //printEdge(*VI);
@@ -159,8 +168,9 @@ bool ProfilePaths::runOnFunction(Function &F){
// All paths for now are acyclic, // All paths for now are acyclic,
// since no back edges in the graph now // since no back edges in the graph now
// numPaths is the number of acyclic paths in the graph // numPaths is the number of acyclic paths in the graph
int numPaths=valueAssignmentToEdges(g); int numPaths=valueAssignmentToEdges(g, nodePriority);
if(numPaths<=1 || numPaths >5000) return false;
//std::cerr<<"Numpaths="<<numPaths<<std::endl; //std::cerr<<"Numpaths="<<numPaths<<std::endl;
//printGraph(g); //printGraph(g);
//create instruction allocation r and count //create instruction allocation r and count
@@ -186,33 +196,7 @@ bool ProfilePaths::runOnFunction(Function &F){
//get increments along different paths, //get increments along different paths,
//and assign "increments" and "updates" (to r and count) //and assign "increments" and "updates" (to r and count)
//"optimally". Finally, insert llvm code along various edges //"optimally". Finally, insert llvm code along various edges
processGraph(g, rVar, countVar, be, stDummy, exDummy, numPaths); processGraph(g, rVar, countVar, be, stDummy, exDummy, numPaths, mn);
/*
//get the paths
static std::ofstream to("paths.sizes");
static std::ofstream bbs("paths.look");
assert(to && "Cannot open file\n");
assert(bbs && "Cannot open file\n");
for(int i=0;i<numPaths; ++i){
std::vector<BasicBlock *> vBB;
getBBtrace(vBB, i, M);
//get total size of vector
int size=0;
bbs<<"Meth:"<<mn<<" Path:"<<i<<"\n-------------\n";
for(vector<BasicBlock *>::iterator VBI=vBB.begin(); VBI!=vBB.end();
++VBI){
BasicBlock *BB=*VBI;
size+=BB->size();
if(BB==M->front())
size-=numPaths;
bbs<<BB->getName()<<"->";
}
bbs<<"\n--------------\n";
to<<"::::: "<<mn<<" "<<i<<" "<<size<<"\n";
}
*/
//}
return true; // Always modifies function return true; // Always modifies function
} }