From e6c9104eb92c9ef595d0b6f352e311164287a7f1 Mon Sep 17 00:00:00 2001 From: Chris Lattner Date: Mon, 22 Oct 2007 06:34:15 +0000 Subject: [PATCH] Check in part 2: parser and ast. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43218 91177308-0d34-0410-b5e6-96231b3b80d8 --- docs/tutorial/LangImpl1.html | 6 +- docs/tutorial/LangImpl2.html | 1177 ++++++++++++++++++++++++++++++++++ docs/tutorial/index.html | 2 +- 3 files changed, 1181 insertions(+), 4 deletions(-) create mode 100644 docs/tutorial/LangImpl2.html diff --git a/docs/tutorial/LangImpl1.html b/docs/tutorial/LangImpl1.html index 49ad1818d8b..a699ed6f5e3 100644 --- a/docs/tutorial/LangImpl1.html +++ b/docs/tutorial/LangImpl1.html @@ -56,7 +56,7 @@ which looks like this:

 # Compute the x'th fibonacci number.
 def fib(x)
-  if x < 3 then
+  if x < 3 then
     1
   else
     fib(x-1)+fib(x-2)
@@ -241,8 +241,8 @@ this code:

With this, we have the complete lexer for the basic Kaleidoscope language. Next we'll build a simple parser that uses this to -build an Abstract Syntax Tree. If you prefer, you can jump to the main tutorial index page. +build an Abstract Syntax Tree. When we have that, we'll include a driver +so that you can use the lexer and parser together.

diff --git a/docs/tutorial/LangImpl2.html b/docs/tutorial/LangImpl2.html new file mode 100644 index 00000000000..c153aa2c973 --- /dev/null +++ b/docs/tutorial/LangImpl2.html @@ -0,0 +1,1177 @@ + + + + + Kaleidoscope: Implementing a Parser and AST + + + + + + + +
Kaleidoscope: Implementing a Parser and AST
+ +
+

Written by Chris Lattner

+
+ + + + + +
+ +

Welcome to part 2 of the "Implementing a language with +LLVM" tutorial. This chapter shows you how to use the Lexer built in Chapter 1 to build a full parser for +our Kaleidoscope language and build an Abstract Syntax +Tree (AST).

+ +

The parser we will build uses a combination of Recursive Descent +Parsing and Operator-Precedence +Parsing to parse the Kaleidoscope language (the later for binary expression +and the former for everything else). Before we get to parsing though, lets talk +about the output of the parser: the Abstract Syntax Tree.

+ +
+ + + + + +
+ +

The AST for a program captures its behavior in a way that it is easy for +later stages of the compiler (e.g. code generation) to interpret. We basically +want one object for each construct in the language, and the AST should closely +model the language. In Kaleidoscope, we have expressions, a prototype, and a +function object. We'll start with expressions first:

+ +
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+  virtual ~ExprAST() {}
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+  double Val;
+public:
+  NumberExprAST(double val) : Val(val) {}
+};
+
+
+ +

The code above shows the definition of the base ExprAST class and one +subclass which we use for numeric literals. The important thing about this is +that the NumberExprAST class captures the numeric value of the literal in the +class, so that later phases of the compiler can know what it is.

+ +

Right now we only create the AST, so there are no useful accessor methods on +them. It would be very easy to add a virtual method to pretty print the code, +for example. Here are the other expression AST node definitions that we'll use +in the basic form of the Kaleidoscope language. +

+ +
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+  std::string Name;
+public:
+  VariableExprAST(const std::string &name) : Name(name) {}
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+  char Op;
+  ExprAST *LHS, *RHS;
+public:
+  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
+    : Op(op), LHS(lhs), RHS(rhs) {}
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+  std::string Callee;
+  std::vector<ExprAST*> Args;
+public:
+  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+    : Callee(callee), Args(args) {}
+};
+
+
+ +

This is all (intentially) rather straight-forward: variables capture the +variable name, binary operators capture their opcode (e.g. '+'), and calls +capture a function name and list of argument expressions. One thing that is +nice about our AST is that it captures the language features without talking +about the syntax of the language. Note that there is no discussion about +precedence of binary operators, lexical structure etc.

+ +

For our basic language, these are all of the expression nodes we'll define. +because it doesn't have conditional control flow, it isn't turing complete: +we'll fix that in a later installment. The two things we need next are a way +to talk about the interface to a function, and a way to talk about functions +themselves:

+ +
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+  std::string Name;
+  std::vector<std::string> Args;
+public:
+  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+    : Name(name), Args(args) {}
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+  PrototypeAST *Proto;
+  ExprAST *Body;
+public:
+  FunctionAST(PrototypeAST *proto, ExprAST *body)
+    : Proto(proto), Body(body) {}
+};
+
+
+ +

In Kaleidoscope, functions are typed with just a count of their arguments. +Since all values are double precision floating point, this fact doesn't need to +be captured anywhere. In a more aggressive and realistic language, the +"ExprAST" class would probably have a type field.

+ +

With this scaffolding, we can now talk about parsing expressions and function +bodies in Kaleidoscope.

+ +
+ + + + + +
+ +

Now that we have an AST to build, we need to define the parser code to build +it. The idea here is that we want to parse something like "x+y" (which is +returned as three tokens by the lexer) into an AST that could be generated with +calls like this:

+ +
+
+  ExprAST *X = new VariableExprAST("x");
+  ExprAST *Y = new VariableExprAST("y");
+  ExprAST *Result = new BinaryExprAST('+', X, Y);
+
+
+ +

In order to do this, we'll start by defining some basic helper routines:

+ +
+
+/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+/// token the parser it looking at.  getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+  return CurTok = gettok();
+}
+
+
+ +

+This implements a simple token buffer around the lexer. This allows +us to look one token ahead at what the lexer is returning. Every function in +our lexer will assume that CurTok is the current token that needs to be +parsed.

+ +

Again, we define +these with global variables: it would be better design to wrap the entire parser +in a class and use instance variables for these. +

+ +
+
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+
+ +

+The Error routines are simple helper routines that our parser will use +to handle errors. The error recovery in our parser will not be the best and +are not particular user-friendly, but it will be enough for our tutorial. These +routines make it easier to handle errors in routines that have various return +types: they always return null.

+ +

With these basic helper functions implemented, we can implement the first +piece of our grammar: we'll start with numeric literals.

+ +
+ + + + + +
+ +

We start with numeric literals, because they are the simplest to process. +For each production in our grammar, we'll define a function which parses that +production. For numeric literals, we have: +

+ +
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+  ExprAST *Result = new NumberExprAST(NumVal);
+  getNextToken(); // consume the number
+  return Result;
+}
+
+
+ +

This routine is very simple: it expects to be called when the current token +is a tok_number token. It takes the current number value, creates +a NumberExprAST node, advances the lexer to the next token, then +returns.

+ +

There are some interesting aspects of this. The most important one is that +this routine eats all of the tokens that correspond to the production, and +returns the lexer buffer with the next token (which is not part of the grammar +production) ready to go. This is a fairly standard way to go for recursive +descent parsers. For a better example, the parenthesis operator is defined like +this:

+ +
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+  getNextToken();  // eat (.
+  ExprAST *V = ParseExpression();
+  if (!V) return 0;
+  
+  if (CurTok != ')')
+    return Error("expected ')'");
+  getNextToken();  // eat ).
+  return V;
+}
+
+
+ +

This function illustrates a number of interesting things about the parser: +1) it shows how we use the Error routines. When called, this function expects +that the current token is a '(' token, but after parsing the subexpression, it +is possible that there is not a ')' waiting. For example, if the user types in +"(4 x" instead of "(4)", the parser should emit an error. Because errors can +occur, the parser needs a way to indicate that they happened: in our parser, we +return null on an error.

+ +

Another interesting aspect of this function is that it uses recursion by +calling ParseExpression (we will soon see that ParseExpression can call +ParseParenExpr). This is powerful because it allows us to handle +recursive grammars, and keeps each production very simple. Note that +parenthesis do not cause construction of AST nodes themselves. While we could +do this, the most important role of parens are to guide the parser and provide +grouping. Once the parser constructs the AST, parens are not needed.

+ +

The next simple production is for handling variable references and function +calls:

+ +
+
+/// identifierexpr
+///   ::= identifer
+///   ::= identifer '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+  std::string IdName = IdentifierStr;
+  
+  getNextToken();  // eat identifer.
+  
+  if (CurTok != '(') // Simple variable ref.
+    return new VariableExprAST(IdName);
+  
+  // Call.
+  getNextToken();  // eat (
+  std::vector<ExprAST*> Args;
+  while (1) {
+    ExprAST *Arg = ParseExpression();
+    if (!Arg) return 0;
+    Args.push_back(Arg);
+    
+    if (CurTok == ')') break;
+    
+    if (CurTok != ',')
+      return Error("Expected ')'");
+    getNextToken();
+  }
+
+  // Eat the ')'.
+  getNextToken();
+  
+  return new CallExprAST(IdName, Args);
+}
+
+
+ +

This routine follows the same style as the other routines (it expects to be +called if the current token is a tok_identifier token). It also has +recursion and error handling. One interesting aspect of this is that it uses +look-ahead to determine if the current identifier is a stand alone +variable reference or if it is a function call expression. It handles this by +checking to see if the token after the identifier is a '(' token, and constructs +either a VariableExprAST or CallExprAST node as appropriate. +

+ +

Now that we have all of our simple expression parsing logic in place, we can +define a helper function to wrap them up in a class. We call this class of +expressions "primary" expressions, for reasons that will become more clear +later. In order to parse a primary expression, we need to determine what sort +of expression it is:

+ +
+
+/// primary
+///   ::= identifierexpr
+///   ::= numberexpr
+///   ::= parenexpr
+static ExprAST *ParsePrimary() {
+  switch (CurTok) {
+  default: return Error("unknown token when expecting an expression");
+  case tok_identifier: return ParseIdentifierExpr();
+  case tok_number:     return ParseNumberExpr();
+  case '(':            return ParseParenExpr();
+  }
+}
+
+
+ +

Now that you see the definition of this function, it makes it more obvious +why we can assume the state of CurTok in the various functions. This uses +look-ahead to determine which sort of expression is being inspected, and parses +it with a function call.

+ +

Now that basic expressions are handled, we need to handle binary expressions, +which are a bit more complex.

+ +
+ + + + + +
+ +

Binary expressions are significantly harder to parse because they are often +ambiguous. For example, when given the string "x+y*z", the parser can choose +to parse it as either "(x+y)*z" or "x+(y*z)". With common definitions from +mathematics, we expect the later parse, because "*" (multiplication) has +higher precedence than "+" (addition).

+ +

There are many ways to handle this, but an elegant and efficient way is to +use Operator-Precedence +Parsing. This parsing technique uses the precedence of binary operators to +guide recursion. To start with, we need a table of precedences:

+ +
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+  if (!isascii(CurTok))
+    return -1;
+    
+  // Make sure it's a declared binop.
+  int TokPrec = BinopPrecedence[CurTok];
+  if (TokPrec <= 0) return -1;
+  return TokPrec;
+}
+
+int main() {
+  // Install standard binary operators.
+  // 1 is lowest precedence.
+  BinopPrecedence['<'] = 10;
+  BinopPrecedence['+'] = 20;
+  BinopPrecedence['-'] = 20;
+  BinopPrecedence['*'] = 40;  // highest.
+  ...
+}
+
+
+ +

For the basic form of Kaleidoscope, we will only support 4 binary operators +(this can obviously be extended by you, the reader). The +GetTokPrecedence function returns the precedence for the current token, +or -1 if the token is not a binary operator. Having a map makes it easy to add +new operators and makes it clear that the algorithm doesn't depend on the +specific operators involved, but it would be easy enough to eliminate the map +and do the comparisons in the GetTokPrecedence function.

+ +

With the helper above defined, we can now start parsing binary expressions. +The basic idea of operator precedence parsing is to break down an expression +with potentially ambiguous binary operators into pieces. Consider for example +the expression "a+b+(c+d)*e*f+g". Operator precedence parsing considers this +as a stream of primary expressions separated by binary operators. As such, +it will first parse the leading primary expression "a", then it will see the +pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses +are primary expressions that the binary expression parser doesn't need to worry +about nested subexpressions like (c+d) at all. +

+ +

+To start, an expression is a primary expression potentially followed by a +sequence of [binop,primaryexpr] pairs:

+ +
+
+/// expression
+///   ::= primary binoprhs
+///
+static ExprAST *ParseExpression() {
+  ExprAST *LHS = ParsePrimary();
+  if (!LHS) return 0;
+  
+  return ParseBinOpRHS(0, LHS);
+}
+
+
+ +

ParseBinOpRHS is the function that parses the sequence of pairs for +us. It takes a precedence and a pointer to an expression for the part parsed +so far. Note that "x" is a perfectly valid expression: As such, "binoprhs" is +allowed to be empty, in which case it returns the expression that is passed into +it. In our example above, the code passes the expression for "a" into +ParseBinOpRHS and the current token is "+".

+ +

The precedence value passed into ParseBinOpRHS indicates the +minimal operator precedence that the function is allowed to eat. For +example, if the current pair stream is [+, x] and ParseBinOpRHS is +passed in a precedence of 40, it will not consume any tokens (because the +precedence of '+' is only 20). With this in mind, ParseBinOpRHS starts +with:

+ +
+
+/// binoprhs
+///   ::= ('+' primary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+  // If this is a binop, find its precedence.
+  while (1) {
+    int TokPrec = GetTokPrecedence();
+    
+    // If this is a binop that binds at least as tightly as the current binop,
+    // consume it, otherwise we are done.
+    if (TokPrec < ExprPrec)
+      return LHS;
+
+
+ +

This code gets the precedence of the current token and checks to see if if is +too low. Because we defined invalid tokens to have a precedence of -1, this +check implicitly knows that the pair-stream ends when the token stream runs out +of binary operators. If this check succeeds, we know that the token is a binary +operator and that it will be included in this expression:

+ +
+
+    // Okay, we know this is a binop.
+    int BinOp = CurTok;
+    getNextToken();  // eat binop
+    
+    // Parse the primary expression after the binary operator.
+    ExprAST *RHS = ParsePrimary();
+    if (!RHS) return 0;
+
+
+ +

As such, this code eats (and remembers) the binary operator and then parses +the following primary expression. This builds up the whole pair, the first of +which is [+, b] for the running example.

+ +

Now that we parsed the left-hand side of an expression and one pair of the +RHS sequence, we have to decide which way the expression associates. In +particular, we could have "(a+b) binop unparsed" or "a + (b binop unparsed)". +To determine this, we look ahead at "binop" to determine its precedence and +compare it to BinOp's precedence (which is '+' in this case):

+ +
+
+    // If BinOp binds less tightly with RHS than the operator after RHS, let
+    // the pending operator take RHS as its LHS.
+    int NextPrec = GetTokPrecedence();
+    if (TokPrec < NextPrec) {
+
+
+ +

If the precedence of the binop to the right of "RHS" is lower or equal to the +precedence of our current operator, then we know that the parentheses associate +as "(a+b) binop ...". In our example, since the next operator is "+" and so is +our current one, we know that they have the same precedence. In this case we'll +create the AST node for "a+b", and then continue parsing:

+ +
+
+      ... if body omitted ...
+    }
+    
+    // Merge LHS/RHS.
+    LHS = new BinaryExprAST(BinOp, LHS, RHS);
+  }  // loop around to the top of the while loop.
+}
+
+
+ +

In our example above, this will turn "a+b+" into "(a+b)" and execute the next +iteration of the loop, with "+" as the current token. The code above will eat +and remember it and parse "(c+d)" as the primary expression, which makes the +current pair be [+, (c+d)]. It will then enter the 'if' above with "*" as the +binop to the right of the primary. In this case, the precedence of "*" is +higher than the precedence of "+" so the if condition will be entered.

+ +

The critical question left here is "how can the if condition parse the right +hand side in full"? In particular, to build the AST correctly for our example, +it needs to get all of "(c+d)*e*f" as the RHS expression variable. The code to +do this is surprisingly simple (code from the above two blocks duplicated for +context):

+ +
+
+    // If BinOp binds less tightly with RHS than the operator after RHS, let
+    // the pending operator take RHS as its LHS.
+    int NextPrec = GetTokPrecedence();
+    if (TokPrec < NextPrec) {
+      RHS = ParseBinOpRHS(TokPrec+1, RHS);
+      if (RHS == 0) return 0;
+    }
+    // Merge LHS/RHS.
+    LHS = new BinaryExprAST(BinOp, LHS, RHS);
+  }  // loop around to the top of the while loop.
+}
+
+
+ +

At this point, we know that the binary operator to the RHS of our primary +has higher precedence than the binop we are currently parsing. As such, we know +that any sequence of pairs whose operators are all higher precedence than "+" +should be parsed together and returned as "RHS". To do this, we recursively +invoke the ParseBinOpRHS function specifying "TokPrec+1" as the minimum +precedence required for it to continue. In our example above, this will cause +it to return the AST node for "(c+d)*e*f" as RHS, which is then set as the RHS +of the '+' expression.

+ +

Finally, on the next iteration of the while loop, the "+g" piece is parsed. +and added to the AST. With this little bit of code (14 non-trivial lines), we +correctly handle fully general binary expression parsing in a very elegant way. +

+ +

This wraps up handling of expressions. At this point, we can point the +parser at an arbitrary token stream and build an expression from them, stopping +at the first token that is not part of the expression. Next up we need to +handle function definitions etc.

+ +
+ + + + + +
+ +

+The first basic thing missing is that of function prototypes. In Kaleidoscope, +these are used both for 'extern' function declarations as well as function body +definitions. The code to do this is straight-forward and not very interesting +(once you've survived expressions): +

+ +
+
+/// prototype
+///   ::= id '(' id* ')'
+static PrototypeAST *ParsePrototype() {
+  if (CurTok != tok_identifier)
+    return ErrorP("Expected function name in prototype");
+
+  std::string FnName = IdentifierStr;
+  getNextToken();
+  
+  if (CurTok != '(')
+    return ErrorP("Expected '(' in prototype");
+  
+  std::vector<std::string> ArgNames;
+  while (getNextToken() == tok_identifier)
+    ArgNames.push_back(IdentifierStr);
+  if (CurTok != ')')
+    return ErrorP("Expected ')' in prototype");
+  
+  // success.
+  getNextToken();  // eat ')'.
+  
+  return new PrototypeAST(FnName, ArgNames);
+}
+
+
+ +

Given this, a function definition is very simple, just a prototype plus +and expression to implement the body:

+ +
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+  getNextToken();  // eat def.
+  PrototypeAST *Proto = ParsePrototype();
+  if (Proto == 0) return 0;
+
+  if (ExprAST *E = ParseExpression())
+    return new FunctionAST(Proto, E);
+  return 0;
+}
+
+
+ +

In addition, we support 'extern' to declare functions like 'sin' and 'cos' as +well as to support forward declaration of user functions. 'externs' are just +prototypes with no body:

+ +
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+  getNextToken();  // eat extern.
+  return ParsePrototype();
+}
+
+
+ +

Finally, we'll also let the user type in arbitrary top-level expressions and +evaluate them on the fly. We will handle this by defining anonymous nullary +(zero argument) functions for them:

+ +
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+  if (ExprAST *E = ParseExpression()) {
+    // Make an anonymous proto.
+    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+    return new FunctionAST(Proto, E);
+  }
+  return 0;
+}
+
+
+ +

Now that we have all the pieces, lets build a little driver that will let us +actually execute this code we've built!

+ +
+ + + + + +
+ +

The driver for this simply invokes all of the parsing pieces with a top-level +dispatch loop. There isn't much interesting here, so I'll just include the +top-level loop. See below for full code in the "Top-Level +Parsing" section.

+ +
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+  while (1) {
+    fprintf(stderr, "ready> ");
+    switch (CurTok) {
+    case tok_eof:    return;
+    case ';':        getNextToken(); break;  // ignore top level semicolons.
+    case tok_def:    HandleDefinition(); break;
+    case tok_extern: HandleExtern(); break;
+    default:         HandleTopLevelExpression(); break;
+    }
+  }
+}
+
+
+ +

The most interesting part of this is that we ignore top-level semi colons. +Why is this do you ask? The basic reason is that if you type "4 + 5" at the +command line, the parser doesn't know that that is the end of what you will +type. For example, on the next line you could type "def foo..." in which case +4+5 is the end of a top-level expression. Alternatively you could type "* 6", +which would continue the expression. Having top-level semicolons allows you to +type "4+5;" and the parser will know you are done.

+ +
+ + + + + +
+ +

With just under 400 lines of commented code, we fully defined our minimal +language, including a lexer, parser and AST builder. With this done, the +executable will validate code and tell us if it is gramatically invalid. For +example, here is a sample interaction:

+ +
+
+$ ./a.out 
+ready> def foo(x y) x+foo(y, 4.0);
+ready> Parsed an function definition.
+ready> def foo(x y) x+y y;
+ready> Parsed an function definition.
+ready> Parsed a top-level expr
+ready> def foo(x y) x+y );
+ready> Parsed an function definition.
+ready> Error: unknown token when expecting an expression
+ready> extern sin(a);
+ready> Parsed an extern
+ready> ^D
+$ 
+
+
+ +

+Here is the full code. Note that it is fully self-contained: you don't even +need LLVM for this. In the next installment, we +will describe how to generate LLVM IR from the AST.

+ +
+
+// To build this:
+//  g++ -g toy.cpp 
+//  ./a.out 
+
+#include <cstdio>
+#include <string>
+#include <
+#include <vector>
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+  tok_eof = -1,
+
+  // commands
+  tok_def = -2, tok_extern = -3,
+
+  // primary
+  tok_identifier = -4, tok_number = -5,
+};
+
+static std::string IdentifierStr;  // Filled in if tok_identifier
+static double NumVal;              // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+  static int LastChar = ' ';
+
+  // Skip any whitespace.
+  while (isspace(LastChar))
+    LastChar = getchar();
+
+  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+    IdentifierStr = LastChar;
+    while (isalnum((LastChar = getchar())))
+      IdentifierStr += LastChar;
+
+    if (IdentifierStr == "def") return tok_def;
+    if (IdentifierStr == "extern") return tok_extern;
+    return tok_identifier;
+  }
+
+  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+    std::string NumStr;
+    do {
+      NumStr += LastChar;
+      LastChar = getchar();
+    } while (isdigit(LastChar) || LastChar == '.');
+
+    NumVal = strtod(NumStr.c_str(), 0);
+    return tok_number;
+  }
+
+  if (LastChar == '#') {
+    // Comment until end of line.
+    do LastChar = getchar();
+    while (LastChar != EOF && LastChar != '\n' & LastChar != '\r');
+    
+    if (LastChar != EOF)
+      return gettok();
+  }
+  
+  // Check for end of file.  Don't eat the EOF.
+  if (LastChar == EOF)
+    return tok_eof;
+
+  // Otherwise, just return the character as its ascii value.
+  int ThisChar = LastChar;
+  LastChar = getchar();
+  return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+  virtual ~ExprAST() {}
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+  double Val;
+public:
+  NumberExprAST(double val) : Val(val) {}
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+  std::string Name;
+public:
+  VariableExprAST(const std::string &name) : Name(name) {}
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+  char Op;
+  ExprAST *LHS, *RHS;
+public:
+  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
+    : Op(op), LHS(lhs), RHS(rhs) {}
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+  std::string Callee;
+  std::vector<ExprAST*> Args;
+public:
+  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+    : Callee(callee), Args(args) {}
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+  std::string Name;
+  std::vector< Args;
+public:
+  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+    : Name(name), Args(args) {}
+  
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+  PrototypeAST *Proto;
+  ExprAST *Body;
+public:
+  FunctionAST(PrototypeAST *proto, ExprAST *body)
+    : Proto(proto), Body(body) {}
+  
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+/// token the parser it looking at.  getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+  return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+  if (!isascii(CurTok))
+    return -1;
+  
+  // Make sure it's a declared binop.
+  int TokPrec = BinopPrecedence[CurTok];
+  if (TokPrec <= 0) return -1;
+  return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+///   ::= identifer
+///   ::= identifer '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+  std::string IdName = IdentifierStr;
+  
+  getNextToken();  // eat identifer.
+  
+  if (CurTok != '(') // Simple variable ref.
+    return new VariableExprAST(IdName);
+  
+  // Call.
+  getNextToken();  // eat (
+  std::vector<ExprAST*> Args;
+  while (1) {
+    ExprAST *Arg = ParseExpression();
+    if (!Arg) return 0;
+    Args.push_back(Arg);
+    
+    if (CurTok == ')') break;
+    
+    if (CurTok != ',')
+      return Error("Expected ')'");
+    getNextToken();
+  }
+
+  // Eat the ')'.
+  getNextToken();
+  
+  return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+  ExprAST *Result = new NumberExprAST(NumVal);
+  getNextToken(); // consume the number
+  return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+  getNextToken();  // eat (.
+  ExprAST *V = ParseExpression();
+  if (!V) return 0;
+  
+  if (CurTok != ')')
+    return Error("expected ')'");
+  getNextToken();  // eat ).
+  return V;
+}
+
+/// primary
+///   ::= identifierexpr
+///   ::= numberexpr
+///   ::= parenexpr
+static ExprAST *ParsePrimary() {
+  switch (CurTok) {
+  default: return Error("unknown token when expecting an expression");
+  case tok_identifier: return ParseIdentifierExpr();
+  case tok_number:     return ParseNumberExpr();
+  case '(':            return ParseParenExpr();
+  }
+}
+
+/// binoprhs
+///   ::= ('+' primary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+  // If this is a binop, find its precedence.
+  while (1) {
+    int TokPrec = GetTokPrecedence();
+    
+    // If this is a binop that binds at least as tightly as the current binop,
+    // consume it, otherwise we are done.
+    if (TokPrec < ExprPrec)
+      return LHS;
+    
+    // Okay, we know this is a binop.
+    int BinOp = CurTok;
+    getNextToken();  // eat binop
+    
+    // Parse the primary expression after the binary operator.
+    ExprAST *RHS = ParsePrimary();
+    if (!RHS) return 0;
+    
+    // If BinOp binds less tightly with RHS than the operator after RHS, let
+    // the pending operator take RHS as its LHS.
+    int NextPrec = GetTokPrecedence();
+    if (TokPrec < NextPrec) {
+      RHS = ParseBinOpRHS(TokPrec+1, RHS);
+      if (RHS == 0) return 0;
+    }
+    
+    // Merge LHS/RHS.
+    LHS = new BinaryExprAST(BinOp, LHS, RHS);
+  }
+}
+
+/// expression
+///   ::= primary binoprhs
+///
+static ExprAST *ParseExpression() {
+  ExprAST *LHS = ParsePrimary();
+  if (!LHS) return 0;
+  
+  return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+///   ::= id '(' id* ')'
+static PrototypeAST *ParsePrototype() {
+  if (CurTok != tok_identifier)
+    return ErrorP("Expected function name in prototype");
+
+  std::string FnName = IdentifierStr;
+  getNextToken();
+  
+  if (CurTok != '(')
+    return ErrorP("Expected '(' in prototype");
+  
+  std::vector<std::string> ArgNames;
+  while (getNextToken() == tok_identifier)
+    ArgNames.push_back(IdentifierStr);
+  if (CurTok != ')')
+    return ErrorP("Expected ')' in prototype");
+  
+  // success.
+  getNextToken();  // eat ')'.
+  
+  return new PrototypeAST(FnName, ArgNames);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+  getNextToken();  // eat def.
+  PrototypeAST *Proto = ParsePrototype();
+  if (Proto == 0) return 0;
+
+  if (ExprAST *E = ParseExpression())
+    return new FunctionAST(Proto, E);
+  return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+  if (ExprAST *E = ParseExpression()) {
+    // Make an anonymous proto.
+    PrototypeAST *Proto = new PrototypeAST("", std::vector<());
+    return new FunctionAST(Proto, E);
+  }
+  return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+  getNextToken();  // eat extern.
+  return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing
+//===----------------------------------------------------------------------===//
+
+static void HandleDefinition() {
+  if (FunctionAST *F = ParseDefinition()) {
+    fprintf(stderr, "Parsed a function definition.\n");
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+static void HandleExtern() {
+  if (PrototypeAST *P = ParseExtern()) {
+    fprintf(stderr, "Parsed an extern\n");
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+static void HandleTopLevelExpression() {
+  // Evaluate a top level expression into an anonymous function.
+  if (FunctionAST *F = ParseTopLevelExpr()) {
+    fprintf(stderr, "Parsed a top-level expr\n");
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+  while (1) {
+    fprintf(stderr, "ready> ");
+    switch (CurTok) {
+    case tok_eof:    return;
+    case ';':        getNextToken(); break;  // ignore top level semicolons.
+    case tok_def:    HandleDefinition(); break;
+    case tok_extern: HandleExtern(); break;
+    default:         HandleTopLevelExpression(); break;
+    }
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+  // Install standard binary operators.
+  // 1 is lowest precedence.
+  BinopPrecedence['<'] = 10;
+  BinopPrecedence['+'] = 20;
+  BinopPrecedence['-'] = 20;
+  BinopPrecedence['*'] = 40;  // highest.
+
+  // Prime the first token.
+  fprintf(stderr, "ready> ");
+  getNextToken();
+
+  MainLoop();
+  return 0;
+}
+
+
+
+ + +
+
+ Valid CSS! + Valid HTML 4.01! + + Chris Lattner
+ The LLVM Compiler Infrastructure
+ Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ +
+ + diff --git a/docs/tutorial/index.html b/docs/tutorial/index.html index acaee03367b..6991adfe6f3 100644 --- a/docs/tutorial/index.html +++ b/docs/tutorial/index.html @@ -28,7 +28,7 @@
  • Implementing a language with LLVM: Kaleidoscope
    1. The basic language, with its lexer
    2. -
    3. Implementing a Parser and AST
    4. +
    5. Implementing a Parser and AST
    6. Implementing code generation to LLVM IR
    7. Adding JIT codegen support
    8. Extending the language: if/then/else