mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-04 10:30:01 +00:00
Remove all JIT specific code and switch the code generator over to emitting
relocations for global references. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18068 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
7ddde32ead
commit
e72e445ed5
@ -8,12 +8,12 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains the pass that transforms the X86 machine instructions into
|
||||
// actual executable machine code.
|
||||
// relocatable machine code.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "jit"
|
||||
#include "X86TargetMachine.h"
|
||||
#include "X86Relocations.h"
|
||||
#include "X86.h"
|
||||
#include "llvm/PassManager.h"
|
||||
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
||||
@ -21,170 +21,14 @@
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/Passes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Config/alloca.h"
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
Statistic<>
|
||||
NumEmitted("x86-emitter", "Number of machine instructions emitted");
|
||||
|
||||
class JITResolver {
|
||||
MachineCodeEmitter &MCE;
|
||||
|
||||
// LazyCodeGenMap - Keep track of call sites for functions that are to be
|
||||
// lazily resolved.
|
||||
std::map<unsigned, Function*> LazyCodeGenMap;
|
||||
|
||||
// LazyResolverMap - Keep track of the lazy resolver created for a
|
||||
// particular function so that we can reuse them if necessary.
|
||||
std::map<Function*, unsigned> LazyResolverMap;
|
||||
public:
|
||||
JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
|
||||
unsigned getLazyResolver(Function *F);
|
||||
unsigned addFunctionReference(unsigned Address, Function *F);
|
||||
|
||||
private:
|
||||
unsigned emitStubForFunction(Function *F);
|
||||
static void CompilationCallback();
|
||||
unsigned resolveFunctionReference(unsigned RetAddr);
|
||||
};
|
||||
|
||||
static JITResolver &getResolver(MachineCodeEmitter &MCE) {
|
||||
static JITResolver *TheJITResolver = 0;
|
||||
if (TheJITResolver == 0)
|
||||
TheJITResolver = new JITResolver(MCE);
|
||||
return *TheJITResolver;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void *X86JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE) {
|
||||
return (void*)(intptr_t)getResolver(MCE).getLazyResolver(F);
|
||||
}
|
||||
|
||||
void X86JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
|
||||
unsigned char *OldByte = (unsigned char *) Old;
|
||||
*OldByte++ = 0xE9; // Emit JMP opcode.
|
||||
int32_t *OldWord = (int32_t *) OldByte;
|
||||
int32_t NewAddr = (intptr_t) New;
|
||||
int32_t OldAddr = (intptr_t) OldWord;
|
||||
*OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
|
||||
}
|
||||
|
||||
/// addFunctionReference - This method is called when we need to emit the
|
||||
/// address of a function that has not yet been emitted, so we don't know the
|
||||
/// address. Instead, we emit a call to the CompilationCallback method, and
|
||||
/// keep track of where we are.
|
||||
///
|
||||
unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
|
||||
DEBUG(std::cerr << "Emitting lazily resolved reference to function '"
|
||||
<< F->getName() << "' at address " << std::hex << Address
|
||||
<< std::dec << "\n");
|
||||
LazyCodeGenMap[Address] = F;
|
||||
return (intptr_t)&JITResolver::CompilationCallback;
|
||||
}
|
||||
|
||||
unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
|
||||
std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
|
||||
assert(I != LazyCodeGenMap.end() && "Not in map!");
|
||||
Function *F = I->second;
|
||||
LazyCodeGenMap.erase(I);
|
||||
return MCE.forceCompilationOf(F);
|
||||
}
|
||||
|
||||
unsigned JITResolver::getLazyResolver(Function *F) {
|
||||
std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
|
||||
if (I != LazyResolverMap.end() && I->first == F) return I->second;
|
||||
|
||||
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
|
||||
|
||||
unsigned Stub = emitStubForFunction(F);
|
||||
LazyResolverMap.insert(I, std::make_pair(F, Stub));
|
||||
return Stub;
|
||||
}
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma optimize("y", off)
|
||||
#endif
|
||||
|
||||
void JITResolver::CompilationCallback() {
|
||||
#ifdef _MSC_VER
|
||||
unsigned *StackPtr, RetAddr;
|
||||
__asm mov StackPtr, ebp;
|
||||
__asm mov eax, DWORD PTR [ebp + 4];
|
||||
__asm mov RetAddr, eax;
|
||||
#else
|
||||
unsigned *StackPtr = (unsigned*)__builtin_frame_address(0);
|
||||
unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0);
|
||||
|
||||
// FIXME: __builtin_frame_address doesn't work if frame pointer elimination
|
||||
// has been performed. Having a variable sized alloca disables frame pointer
|
||||
// elimination currently, even if it's dead. This is a gross hack.
|
||||
alloca(10+(RetAddr >> 31));
|
||||
|
||||
#endif
|
||||
assert(StackPtr[1] == RetAddr &&
|
||||
"Could not find return address on the stack!");
|
||||
|
||||
// It's a stub if there is an interrupt marker after the call...
|
||||
bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD;
|
||||
|
||||
// The call instruction should have pushed the return value onto the stack...
|
||||
RetAddr -= 4; // Backtrack to the reference itself...
|
||||
|
||||
#if 0
|
||||
DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
|
||||
<< " ESP=0x" << (unsigned)StackPtr << std::dec
|
||||
<< ": Resolving call to function: "
|
||||
<< TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
|
||||
#endif
|
||||
|
||||
// Sanity check to make sure this really is a call instruction...
|
||||
assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
|
||||
|
||||
JITResolver &JR = getResolver(*(MachineCodeEmitter*)0);
|
||||
unsigned NewVal = JR.resolveFunctionReference(RetAddr);
|
||||
|
||||
// Rewrite the call target... so that we don't fault every time we execute
|
||||
// the call.
|
||||
*(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4;
|
||||
|
||||
if (isStub) {
|
||||
// If this is a stub, rewrite the call into an unconditional branch
|
||||
// instruction so that two return addresses are not pushed onto the stack
|
||||
// when the requested function finally gets called. This also makes the
|
||||
// 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
|
||||
((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9;
|
||||
}
|
||||
|
||||
// Change the return address to reexecute the call instruction...
|
||||
StackPtr[1] -= 5;
|
||||
}
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma optimize( "", on )
|
||||
#endif
|
||||
|
||||
/// emitStubForFunction - This method is used by the JIT when it needs to emit
|
||||
/// the address of a function for a function whose code has not yet been
|
||||
/// generated. In order to do this, it generates a stub which jumps to the lazy
|
||||
/// function compiler, which will eventually get fixed to call the function
|
||||
/// directly.
|
||||
///
|
||||
unsigned JITResolver::emitStubForFunction(Function *F) {
|
||||
MCE.startFunctionStub(*F, 6);
|
||||
MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
|
||||
|
||||
unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
|
||||
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
|
||||
|
||||
MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
|
||||
return (intptr_t)MCE.finishFunctionStub(*F);
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
class Emitter : public MachineFunctionPass {
|
||||
const X86InstrInfo *II;
|
||||
@ -211,6 +55,7 @@ namespace {
|
||||
void emitPCRelativeValue(unsigned Address);
|
||||
void emitGlobalAddressForCall(GlobalValue *GV);
|
||||
void emitGlobalAddressForPtr(GlobalValue *GV, int Disp = 0);
|
||||
void emitExternalSymbolAddress(const char *ES, bool isPCRelative);
|
||||
|
||||
void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
|
||||
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
|
||||
@ -265,6 +110,12 @@ void Emitter::emitBasicBlock(const MachineBasicBlock &MBB) {
|
||||
emitInstruction(*I);
|
||||
}
|
||||
|
||||
/// emitPCRelativeValue - Emit a 32-bit PC relative address.
|
||||
///
|
||||
void Emitter::emitPCRelativeValue(unsigned Address) {
|
||||
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
|
||||
}
|
||||
|
||||
/// emitPCRelativeBlockAddress - This method emits the PC relative address of
|
||||
/// the specified basic block, or if the basic block hasn't been emitted yet
|
||||
/// (because this is a forward branch), it keeps track of the information
|
||||
@ -276,8 +127,7 @@ void Emitter::emitPCRelativeBlockAddress(const MachineBasicBlock *MBB) {
|
||||
std::map<const MachineBasicBlock*, unsigned>::iterator I =
|
||||
BasicBlockAddrs.find(MBB);
|
||||
if (I != BasicBlockAddrs.end()) {
|
||||
unsigned Location = I->second;
|
||||
MCE.emitWord(Location-MCE.getCurrentPCValue()-4);
|
||||
emitPCRelativeValue(I->second);
|
||||
} else {
|
||||
// Otherwise, remember where this reference was and where it is to so we can
|
||||
// deal with it later.
|
||||
@ -286,25 +136,13 @@ void Emitter::emitPCRelativeBlockAddress(const MachineBasicBlock *MBB) {
|
||||
}
|
||||
}
|
||||
|
||||
/// emitPCRelativeValue - Emit a 32-bit PC relative address.
|
||||
///
|
||||
void Emitter::emitPCRelativeValue(unsigned Address) {
|
||||
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
|
||||
}
|
||||
|
||||
/// emitGlobalAddressForCall - Emit the specified address to the code stream
|
||||
/// assuming this is part of a function call, which is PC relative.
|
||||
///
|
||||
void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
|
||||
// Get the address from the backend...
|
||||
unsigned Address = MCE.getGlobalValueAddress(GV);
|
||||
|
||||
if (Address == 0) {
|
||||
// FIXME: this is JIT specific!
|
||||
Address = getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(),
|
||||
cast<Function>(GV));
|
||||
}
|
||||
emitPCRelativeValue(Address);
|
||||
MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(),
|
||||
X86::reloc_pcrel_word, GV));
|
||||
MCE.emitWord(0);
|
||||
}
|
||||
|
||||
/// emitGlobalAddress - Emit the specified address to the code stream assuming
|
||||
@ -312,21 +150,19 @@ void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
|
||||
/// PC relative.
|
||||
///
|
||||
void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, int Disp /* = 0 */) {
|
||||
// Get the address from the backend...
|
||||
unsigned Address = MCE.getGlobalValueAddress(GV);
|
||||
|
||||
// If the machine code emitter doesn't know what the address IS yet, we have
|
||||
// to take special measures.
|
||||
//
|
||||
if (Address == 0) {
|
||||
// FIXME: this is JIT specific!
|
||||
Address = getResolver(MCE).getLazyResolver((Function*)GV);
|
||||
}
|
||||
|
||||
MCE.emitWord(Address + Disp);
|
||||
MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(),
|
||||
X86::reloc_absolute_word, GV));
|
||||
MCE.emitWord(Disp); // The relocated value will be added to the displacement
|
||||
}
|
||||
|
||||
|
||||
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
|
||||
/// be emitted to the current location in the function, and allow it to be PC
|
||||
/// relative.
|
||||
void Emitter::emitExternalSymbolAddress(const char *ES, bool isPCRelative) {
|
||||
MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(),
|
||||
isPCRelative ? X86::reloc_pcrel_word : X86::reloc_absolute_word, ES));
|
||||
MCE.emitWord(0);
|
||||
}
|
||||
|
||||
/// N86 namespace - Native X86 Register numbers... used by X86 backend.
|
||||
///
|
||||
@ -560,9 +396,7 @@ void Emitter::emitInstruction(const MachineInstr &MI) {
|
||||
assert(MO.isPCRelative() && "Call target is not PC Relative?");
|
||||
emitGlobalAddressForCall(MO.getGlobal());
|
||||
} else if (MO.isExternalSymbol()) {
|
||||
unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName());
|
||||
assert(Address && "Unknown external symbol!");
|
||||
emitPCRelativeValue(Address);
|
||||
emitExternalSymbolAddress(MO.getSymbolName(), true);
|
||||
} else if (MO.isImmediate()) {
|
||||
emitConstant(MO.getImmedValue(), sizeOfImm(Desc));
|
||||
} else {
|
||||
@ -587,9 +421,7 @@ void Emitter::emitInstruction(const MachineInstr &MI) {
|
||||
} else if (MO1.isExternalSymbol()) {
|
||||
assert(sizeOfImm(Desc) == 4 &&
|
||||
"Don't know how to emit non-pointer values!");
|
||||
unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName());
|
||||
assert(Address && "Unknown external symbol!");
|
||||
MCE.emitWord(Address);
|
||||
emitExternalSymbolAddress(MO1.getSymbolName(), false);
|
||||
} else {
|
||||
emitConstant(MO1.getImmedValue(), sizeOfImm(Desc));
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user