mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 20:34:38 +00:00
APIntify various computations in ScalarEvolution
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34780 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b5ca2cd509
commit
e8019bb1fc
@ -1176,7 +1176,7 @@ namespace {
|
||||
/// in the header of its containing loop, we know the loop executes a
|
||||
/// constant number of times, and the PHI node is just a recurrence
|
||||
/// involving constants, fold it.
|
||||
Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
|
||||
Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
|
||||
const Loop *L);
|
||||
};
|
||||
}
|
||||
@ -1729,7 +1729,7 @@ ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
|
||||
// Evaluate the condition for this iteration.
|
||||
Result = ConstantExpr::getICmp(predicate, Result, RHS);
|
||||
if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
|
||||
if (cast<ConstantInt>(Result)->getZExtValue() == false) {
|
||||
if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
|
||||
#if 0
|
||||
cerr << "\n***\n*** Computed loop count " << *ItCst
|
||||
<< "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
|
||||
@ -1824,13 +1824,13 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
|
||||
/// constant number of times, and the PHI node is just a recurrence
|
||||
/// involving constants, fold it.
|
||||
Constant *ScalarEvolutionsImpl::
|
||||
getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
|
||||
getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
|
||||
std::map<PHINode*, Constant*>::iterator I =
|
||||
ConstantEvolutionLoopExitValue.find(PN);
|
||||
if (I != ConstantEvolutionLoopExitValue.end())
|
||||
return I->second;
|
||||
|
||||
if (Its > MaxBruteForceIterations)
|
||||
if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
|
||||
return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
|
||||
|
||||
Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
|
||||
@ -1850,11 +1850,11 @@ getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
|
||||
return RetVal = 0; // Not derived from same PHI.
|
||||
|
||||
// Execute the loop symbolically to determine the exit value.
|
||||
unsigned IterationNum = 0;
|
||||
unsigned NumIterations = Its;
|
||||
if (NumIterations != Its)
|
||||
return RetVal = 0; // More than 2^32 iterations??
|
||||
if (Its.getActiveBits() >= 32)
|
||||
return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
|
||||
|
||||
unsigned NumIterations = Its.getZExtValue(); // must be in range
|
||||
unsigned IterationNum = 0;
|
||||
for (Constant *PHIVal = StartCST; ; ++IterationNum) {
|
||||
if (IterationNum == NumIterations)
|
||||
return RetVal = PHIVal; // Got exit value!
|
||||
@ -1904,7 +1904,7 @@ ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
|
||||
// Couldn't symbolically evaluate.
|
||||
if (!CondVal) return UnknownValue;
|
||||
|
||||
if (CondVal->getZExtValue() == uint64_t(ExitWhen)) {
|
||||
if (CondVal->getValue() == uint64_t(ExitWhen)) {
|
||||
ConstantEvolutionLoopExitValue[PN] = PHIVal;
|
||||
++NumBruteForceTripCountsComputed;
|
||||
return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
|
||||
@ -1946,7 +1946,7 @@ SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
|
||||
// this is a constant evolving PHI node, get the final value at
|
||||
// the specified iteration number.
|
||||
Constant *RV = getConstantEvolutionLoopExitValue(PN,
|
||||
ICC->getValue()->getZExtValue(),
|
||||
ICC->getValue()->getValue(),
|
||||
LI);
|
||||
if (RV) return SCEVUnknown::get(RV);
|
||||
}
|
||||
@ -2063,57 +2063,54 @@ SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
|
||||
static std::pair<SCEVHandle,SCEVHandle>
|
||||
SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
|
||||
assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
|
||||
SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
|
||||
SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
|
||||
SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
|
||||
SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
|
||||
SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
|
||||
SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
|
||||
|
||||
// We currently can only solve this if the coefficients are constants.
|
||||
if (!L || !M || !N) {
|
||||
if (!LC || !MC || !NC) {
|
||||
SCEV *CNC = new SCEVCouldNotCompute();
|
||||
return std::make_pair(CNC, CNC);
|
||||
}
|
||||
|
||||
Constant *C = L->getValue();
|
||||
Constant *Two = ConstantInt::get(C->getType(), 2);
|
||||
uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
|
||||
APInt L(LC->getValue()->getValue());
|
||||
APInt M(MC->getValue()->getValue());
|
||||
APInt N(MC->getValue()->getValue());
|
||||
APInt Two(BitWidth, 2);
|
||||
APInt Four(BitWidth, 4);
|
||||
|
||||
// Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
|
||||
// The B coefficient is M-N/2
|
||||
Constant *B = ConstantExpr::getSub(M->getValue(),
|
||||
ConstantExpr::getSDiv(N->getValue(),
|
||||
Two));
|
||||
// The A coefficient is N/2
|
||||
Constant *A = ConstantExpr::getSDiv(N->getValue(), Two);
|
||||
{
|
||||
using namespace APIntOps;
|
||||
APInt C(L);
|
||||
// Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
|
||||
// The B coefficient is M-N/2
|
||||
APInt B(M);
|
||||
B -= sdiv(N,Two);
|
||||
|
||||
// Compute the B^2-4ac term.
|
||||
Constant *SqrtTerm =
|
||||
ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
|
||||
ConstantExpr::getMul(A, C));
|
||||
SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
|
||||
// The A coefficient is N/2
|
||||
APInt A(N);
|
||||
A = A.sdiv(Two);
|
||||
|
||||
// Compute floor(sqrt(B^2-4ac))
|
||||
uint64_t SqrtValV = cast<ConstantInt>(SqrtTerm)->getZExtValue();
|
||||
uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
|
||||
// The square root might not be precise for arbitrary 64-bit integer
|
||||
// values. Do some sanity checks to ensure it's correct.
|
||||
if (SqrtValV2*SqrtValV2 > SqrtValV ||
|
||||
(SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
|
||||
SCEV *CNC = new SCEVCouldNotCompute();
|
||||
return std::make_pair(CNC, CNC);
|
||||
}
|
||||
// Compute the B^2-4ac term.
|
||||
APInt SqrtTerm(B);
|
||||
SqrtTerm *= B;
|
||||
SqrtTerm -= Four * (A * C);
|
||||
|
||||
ConstantInt *SqrtVal = ConstantInt::get(Type::Int64Ty, SqrtValV2);
|
||||
SqrtTerm = ConstantExpr::getTruncOrBitCast(SqrtVal, SqrtTerm->getType());
|
||||
// Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
|
||||
// integer value or else APInt::sqrt() will assert.
|
||||
APInt SqrtVal(SqrtTerm.sqrt());
|
||||
|
||||
Constant *NegB = ConstantExpr::getNeg(B);
|
||||
Constant *TwoA = ConstantExpr::getMul(A, Two);
|
||||
// Compute the two solutions for the quadratic formula.
|
||||
// The divisions must be performed as signed divisions.
|
||||
APInt NegB(-B);
|
||||
APInt TwoA( A * Two );
|
||||
ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
|
||||
ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
|
||||
|
||||
// The divisions must be performed as signed divisions.
|
||||
Constant *Solution1 =
|
||||
ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
|
||||
Constant *Solution2 =
|
||||
ConstantExpr::getSDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
|
||||
return std::make_pair(SCEVUnknown::get(Solution1),
|
||||
SCEVUnknown::get(Solution2));
|
||||
return std::make_pair(SCEVUnknown::get(Solution1),
|
||||
SCEVUnknown::get(Solution2));
|
||||
} // end APIntOps namespace
|
||||
}
|
||||
|
||||
/// HowFarToZero - Return the number of times a backedge comparing the specified
|
||||
|
Loading…
x
Reference in New Issue
Block a user