InstCombine: fold more cases of (fp_to_u/sint (u/sint_to_fp val))

Fixes radar 15486701.

From: Fiona Glaser <fglaser@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229437 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Mehdi Amini 2015-02-16 21:47:54 +00:00
parent be55a79941
commit e97c675022
3 changed files with 159 additions and 22 deletions

View File

@ -1341,22 +1341,57 @@ Instruction *InstCombiner::visitFPExt(CastInst &CI) {
return commonCastTransforms(CI); return commonCastTransforms(CI);
} }
// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, this won't work with
// i64 -> float -> i64.
Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
return nullptr;
Instruction *OpI = cast<Instruction>(FI.getOperand(0));
Value *SrcI = OpI->getOperand(0);
Type *FITy = FI.getType();
Type *OpITy = OpI->getType();
Type *SrcTy = SrcI->getType();
bool IsInputSigned = isa<SIToFPInst>(OpI);
bool IsOutputSigned = isa<FPToSIInst>(FI);
// We can safely assume the conversion won't overflow the output range,
// because (for example) (uint8_t)18293.f is undefined behavior.
// Since we can assume the conversion won't overflow, our decision as to
// whether the input will fit in the float should depend on the minimum
// of the input range and output range.
// This means this is also safe for a signed input and unsigned output, since
// a negative input would lead to undefined behavior.
int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
int ActualSize = std::min(InputSize, OutputSize);
if (ActualSize <= OpITy->getFPMantissaWidth()) {
if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
if (IsInputSigned && IsOutputSigned)
return new SExtInst(SrcI, FITy);
return new ZExtInst(SrcI, FITy);
}
if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
return new TruncInst(SrcI, FITy);
if (SrcTy == FITy)
return ReplaceInstUsesWith(FI, SrcI);
return new BitCastInst(SrcI, FITy);
}
return nullptr;
}
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (!OpI) if (!OpI)
return commonCastTransforms(FI); return commonCastTransforms(FI);
// fptoui(uitofp(X)) --> X if (Instruction *I = FoldItoFPtoI(FI))
// fptoui(sitofp(X)) --> X return I;
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
// 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
return commonCastTransforms(FI); return commonCastTransforms(FI);
} }
@ -1366,17 +1401,8 @@ Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
if (!OpI) if (!OpI)
return commonCastTransforms(FI); return commonCastTransforms(FI);
// fptosi(sitofp(X)) --> X if (Instruction *I = FoldItoFPtoI(FI))
// fptosi(uitofp(X)) --> X return I;
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
// 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() <=
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
return commonCastTransforms(FI); return commonCastTransforms(FI);
} }

View File

@ -245,6 +245,7 @@ public:
Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
Value *A, Value *B, Instruction &Outer, Value *A, Value *B, Instruction &Outer,
SelectPatternFlavor SPF2, Value *C); SelectPatternFlavor SPF2, Value *C);
Instruction *FoldItoFPtoI(Instruction &FI);
Instruction *visitSelectInst(SelectInst &SI); Instruction *visitSelectInst(SelectInst &SI);
Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Instruction *visitCallInst(CallInst &CI); Instruction *visitCallInst(CallInst &CI);

View File

@ -72,3 +72,113 @@ define i32 @test8(i32 %A) nounwind {
ret i32 %C ret i32 %C
} }
; CHECK-LABEL: test9
; CHECK: zext i8
; CHECK-NEXT: ret i32
define i32 @test9(i8 %A) nounwind {
%B = sitofp i8 %A to float
%C = fptoui float %B to i32
ret i32 %C
}
; CHECK-LABEL: test10
; CHECK: sext i8
; CHECK-NEXT: ret i32
define i32 @test10(i8 %A) nounwind {
%B = sitofp i8 %A to float
%C = fptosi float %B to i32
ret i32 %C
}
; If the input value is outside of the range of the output cast, it's
; undefined behavior, so we can assume it fits.
; CHECK-LABEL: test11
; CHECK: trunc
; CHECK-NEXT: ret i8
define i8 @test11(i32 %A) nounwind {
%B = sitofp i32 %A to float
%C = fptosi float %B to i8
ret i8 %C
}
; If the input value is negative, it'll be outside the range of the
; output cast, and thus undefined behavior.
; CHECK-LABEL: test12
; CHECK: zext i8
; CHECK-NEXT: ret i32
define i32 @test12(i8 %A) nounwind {
%B = sitofp i8 %A to float
%C = fptoui float %B to i32
ret i32 %C
}
; This can't fold because the 25-bit input doesn't fit in the mantissa.
; CHECK-LABEL: test13
; CHECK: uitofp
; CHECK-NEXT: fptoui
define i32 @test13(i25 %A) nounwind {
%B = uitofp i25 %A to float
%C = fptoui float %B to i32
ret i32 %C
}
; But this one can.
; CHECK-LABEL: test14
; CHECK: zext i24
; CHECK-NEXT: ret i32
define i32 @test14(i24 %A) nounwind {
%B = uitofp i24 %A to float
%C = fptoui float %B to i32
ret i32 %C
}
; And this one can too.
; CHECK-LABEL: test15
; CHECK: trunc i32
; CHECK-NEXT: ret i24
define i24 @test15(i32 %A) nounwind {
%B = uitofp i32 %A to float
%C = fptoui float %B to i24
ret i24 %C
}
; This can fold because the 25-bit input is signed and we disard the sign bit.
; CHECK-LABEL: test16
; CHECK: zext
define i32 @test16(i25 %A) nounwind {
%B = sitofp i25 %A to float
%C = fptoui float %B to i32
ret i32 %C
}
; This can't fold because the 26-bit input won't fit the mantissa
; even after disarding the signed bit.
; CHECK-LABEL: test17
; CHECK: sitofp
; CHECK-NEXT: fptoui
define i32 @test17(i26 %A) nounwind {
%B = sitofp i26 %A to float
%C = fptoui float %B to i32
ret i32 %C
}
; This can fold because the 54-bit output is signed and we disard the sign bit.
; CHECK-LABEL: test18
; CHECK: trunc
define i54 @test18(i64 %A) nounwind {
%B = sitofp i64 %A to double
%C = fptosi double %B to i54
ret i54 %C
}
; This can't fold because the 55-bit output won't fit the mantissa
; even after disarding the sign bit.
; CHECK-LABEL: test19
; CHECK: sitofp
; CHECK-NEXT: fptosi
define i55 @test19(i64 %A) nounwind {
%B = sitofp i64 %A to double
%C = fptosi double %B to i55
ret i55 %C
}