mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-02 07:11:49 +00:00
Add DomSet back, and revert the changes to LoopSimplify. Apparently the
ETForest updating mechanisms don't work as I thought they did. These changes will be reapplied once the issue is worked out. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35741 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
414de4df41
commit
e9ed4452bc
@ -10,7 +10,8 @@
|
||||
// This file defines the following classes:
|
||||
// 1. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
|
||||
// and their immediate dominator.
|
||||
// 2. DominatorTree: Represent the ImmediateDominator as an explicit tree
|
||||
// 2. DominatorSet: Calculates the [reverse] dominator set for a function
|
||||
// 3. DominatorTree: Represent the ImmediateDominator as an explicit tree
|
||||
// structure.
|
||||
// 4. ETForest: Efficient data structure for dominance comparisons and
|
||||
// nearest-common-ancestor queries.
|
||||
@ -174,6 +175,127 @@ private:
|
||||
void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
|
||||
};
|
||||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
|
||||
/// function, that represents the blocks that dominate the block. If the block
|
||||
/// is unreachable in this function, the set will be empty. This cannot happen
|
||||
/// for reachable code, because every block dominates at least itself.
|
||||
///
|
||||
class DominatorSetBase : public DominatorBase {
|
||||
public:
|
||||
typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
|
||||
// Map of dom sets
|
||||
typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
|
||||
protected:
|
||||
DomSetMapType Doms;
|
||||
public:
|
||||
DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {}
|
||||
|
||||
virtual void releaseMemory() { Doms.clear(); }
|
||||
|
||||
// Accessor interface:
|
||||
typedef DomSetMapType::const_iterator const_iterator;
|
||||
typedef DomSetMapType::iterator iterator;
|
||||
inline const_iterator begin() const { return Doms.begin(); }
|
||||
inline iterator begin() { return Doms.begin(); }
|
||||
inline const_iterator end() const { return Doms.end(); }
|
||||
inline iterator end() { return Doms.end(); }
|
||||
inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
|
||||
inline iterator find(BasicBlock* B) { return Doms.find(B); }
|
||||
|
||||
|
||||
/// getDominators - Return the set of basic blocks that dominate the specified
|
||||
/// block.
|
||||
///
|
||||
inline const DomSetType &getDominators(BasicBlock *BB) const {
|
||||
const_iterator I = find(BB);
|
||||
assert(I != end() && "BB not in function!");
|
||||
return I->second;
|
||||
}
|
||||
|
||||
/// isReachable - Return true if the specified basicblock is reachable. If
|
||||
/// the block is reachable, we have dominator set information for it.
|
||||
///
|
||||
bool isReachable(BasicBlock *BB) const {
|
||||
return !getDominators(BB).empty();
|
||||
}
|
||||
|
||||
/// dominates - Return true if A dominates B.
|
||||
///
|
||||
inline bool dominates(BasicBlock *A, BasicBlock *B) const {
|
||||
return getDominators(B).count(A) != 0;
|
||||
}
|
||||
|
||||
/// properlyDominates - Return true if A dominates B and A != B.
|
||||
///
|
||||
bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
|
||||
return dominates(A, B) && A != B;
|
||||
}
|
||||
|
||||
/// print - Convert to human readable form
|
||||
///
|
||||
virtual void print(std::ostream &OS, const Module* = 0) const;
|
||||
void print(std::ostream *OS, const Module* M = 0) const {
|
||||
if (OS) print(*OS, M);
|
||||
}
|
||||
|
||||
/// dominates - Return true if A dominates B. This performs the special
|
||||
/// checks necessary if A and B are in the same basic block.
|
||||
///
|
||||
bool dominates(Instruction *A, Instruction *B) const;
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// API to update (Post)DominatorSet information based on modifications to
|
||||
// the CFG...
|
||||
|
||||
/// addBasicBlock - Call to update the dominator set with information about a
|
||||
/// new block that was inserted into the function.
|
||||
///
|
||||
void addBasicBlock(BasicBlock *BB, const DomSetType &Dominators) {
|
||||
assert(find(BB) == end() && "Block already in DominatorSet!");
|
||||
Doms.insert(std::make_pair(BB, Dominators));
|
||||
}
|
||||
|
||||
/// addDominator - If a new block is inserted into the CFG, then method may be
|
||||
/// called to notify the blocks it dominates that it is in their set.
|
||||
///
|
||||
void addDominator(BasicBlock *BB, BasicBlock *NewDominator) {
|
||||
iterator I = find(BB);
|
||||
assert(I != end() && "BB is not in DominatorSet!");
|
||||
I->second.insert(NewDominator);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//===-------------------------------------
|
||||
/// DominatorSet Class - Concrete subclass of DominatorSetBase that is used to
|
||||
/// compute a normal dominator set.
|
||||
///
|
||||
class DominatorSet : public DominatorSetBase {
|
||||
public:
|
||||
DominatorSet() : DominatorSetBase(false) {}
|
||||
|
||||
virtual bool runOnFunction(Function &F);
|
||||
|
||||
BasicBlock *getRoot() const {
|
||||
assert(Roots.size() == 1 && "Should always have entry node!");
|
||||
return Roots[0];
|
||||
}
|
||||
|
||||
/// getAnalysisUsage - This simply provides a dominator set
|
||||
///
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.addRequired<ImmediateDominators>();
|
||||
AU.setPreservesAll();
|
||||
}
|
||||
|
||||
// stub - dummy function, just ignore it
|
||||
static int stub;
|
||||
};
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DominatorTree - Calculate the immediate dominator tree for a function.
|
||||
///
|
||||
@ -569,4 +691,7 @@ private:
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
// Make sure that any clients of this file link in Dominators.cpp
|
||||
FORCE_DEFINING_FILE_TO_BE_LINKED(DominatorSet)
|
||||
|
||||
#endif
|
||||
|
@ -64,10 +64,12 @@ namespace {
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
// We need loop information to identify the loops...
|
||||
AU.addRequired<LoopInfo>();
|
||||
AU.addRequired<DominatorSet>();
|
||||
AU.addRequired<DominatorTree>();
|
||||
AU.addRequired<ETForest>();
|
||||
|
||||
AU.addPreserved<LoopInfo>();
|
||||
AU.addPreserved<DominatorSet>();
|
||||
AU.addPreserved<ImmediateDominators>();
|
||||
AU.addPreserved<ETForest>();
|
||||
AU.addPreserved<DominatorTree>();
|
||||
@ -312,7 +314,7 @@ BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
|
||||
// Can we eliminate this phi node now?
|
||||
if (Value *V = PN->hasConstantValue(true)) {
|
||||
if (!isa<Instruction>(V) ||
|
||||
getAnalysis<ETForest>().dominates(cast<Instruction>(V), PN)) {
|
||||
getAnalysis<DominatorSet>().dominates(cast<Instruction>(V), PN)) {
|
||||
PN->replaceAllUsesWith(V);
|
||||
if (AA) AA->deleteValue(PN);
|
||||
BB->getInstList().erase(PN);
|
||||
@ -540,9 +542,10 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
|
||||
|
||||
// Determine which blocks should stay in L and which should be moved out to
|
||||
// the Outer loop now.
|
||||
DominatorSet &DS = getAnalysis<DominatorSet>();
|
||||
std::set<BasicBlock*> BlocksInL;
|
||||
for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
|
||||
if (EF->dominates(Header, *PI))
|
||||
if (DS.dominates(Header, *PI))
|
||||
AddBlockAndPredsToSet(*PI, Header, BlocksInL);
|
||||
|
||||
|
||||
@ -690,8 +693,33 @@ void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
|
||||
++succ_begin(NewBB) == succ_end(NewBB) &&
|
||||
"NewBB should have a single successor!");
|
||||
BasicBlock *NewBBSucc = *succ_begin(NewBB);
|
||||
ETForest& ETF = getAnalysis<ETForest>();
|
||||
|
||||
DominatorSet &DS = getAnalysis<DominatorSet>();
|
||||
|
||||
// Update dominator information... The blocks that dominate NewBB are the
|
||||
// intersection of the dominators of predecessors, plus the block itself.
|
||||
//
|
||||
DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
|
||||
{
|
||||
unsigned i, e = PredBlocks.size();
|
||||
// It is possible for some preds to not be reachable, and thus have empty
|
||||
// dominator sets (all blocks must dom themselves, so no domset would
|
||||
// otherwise be empty). If we see any of these, don't intersect with them,
|
||||
// as that would certainly leave the resultant set empty.
|
||||
for (i = 1; NewBBDomSet.empty(); ++i) {
|
||||
assert(i != e && "Didn't find reachable pred?");
|
||||
NewBBDomSet = DS.getDominators(PredBlocks[i]);
|
||||
}
|
||||
|
||||
// Intersect the rest of the non-empty sets.
|
||||
for (; i != e; ++i) {
|
||||
const DominatorSet::DomSetType &PredDS = DS.getDominators(PredBlocks[i]);
|
||||
if (!PredDS.empty())
|
||||
set_intersect(NewBBDomSet, PredDS);
|
||||
}
|
||||
NewBBDomSet.insert(NewBB); // All blocks dominate themselves.
|
||||
DS.addBasicBlock(NewBB, NewBBDomSet);
|
||||
}
|
||||
|
||||
// The newly inserted basic block will dominate existing basic blocks iff the
|
||||
// PredBlocks dominate all of the non-pred blocks. If all predblocks dominate
|
||||
// the non-pred blocks, then they all must be the same block!
|
||||
@ -700,14 +728,13 @@ void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
|
||||
{
|
||||
BasicBlock *OnePred = PredBlocks[0];
|
||||
unsigned i, e = PredBlocks.size();
|
||||
for (i = 1; !ETF.dominates(&OnePred->getParent()->getEntryBlock(), OnePred); ++i) {
|
||||
for (i = 1; !DS.isReachable(OnePred); ++i) {
|
||||
assert(i != e && "Didn't find reachable pred?");
|
||||
OnePred = PredBlocks[i];
|
||||
}
|
||||
|
||||
for (; i != e; ++i)
|
||||
if (PredBlocks[i] != OnePred &&
|
||||
ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), OnePred)) {
|
||||
if (PredBlocks[i] != OnePred && DS.isReachable(PredBlocks[i])) {
|
||||
NewBBDominatesNewBBSucc = false;
|
||||
break;
|
||||
}
|
||||
@ -715,7 +742,7 @@ void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
|
||||
if (NewBBDominatesNewBBSucc)
|
||||
for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
|
||||
PI != E; ++PI)
|
||||
if (*PI != NewBB && !ETF.dominates(NewBBSucc, *PI)) {
|
||||
if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
|
||||
NewBBDominatesNewBBSucc = false;
|
||||
break;
|
||||
}
|
||||
@ -728,31 +755,44 @@ void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
|
||||
NewBBDominatesNewBBSucc = true;
|
||||
for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
|
||||
PI != E; ++PI)
|
||||
if (*PI != NewBB && !ETF.dominates(NewBBSucc, *PI)) {
|
||||
if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
|
||||
NewBBDominatesNewBBSucc = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
BasicBlock *NewBBIDom = 0;
|
||||
|
||||
// If NewBB dominates some blocks, then it will dominate all blocks that
|
||||
// NewBBSucc does.
|
||||
if (NewBBDominatesNewBBSucc) {
|
||||
Function *F = NewBB->getParent();
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
||||
if (DS.dominates(NewBBSucc, I))
|
||||
DS.addDominator(I, NewBB);
|
||||
}
|
||||
|
||||
// Update immediate dominator information if we have it.
|
||||
BasicBlock *NewBBIDom = 0;
|
||||
if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
|
||||
unsigned i = 0;
|
||||
for (i = 0; i < PredBlocks.size(); ++i)
|
||||
if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i])) {
|
||||
NewBBIDom = PredBlocks[i];
|
||||
break;
|
||||
}
|
||||
assert(i != PredBlocks.size() && "No reachable preds?");
|
||||
for (i = i + 1; i < PredBlocks.size(); ++i) {
|
||||
if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i]))
|
||||
NewBBIDom = ETF.nearestCommonDominator(NewBBIDom, PredBlocks[i]);
|
||||
// To find the immediate dominator of the new exit node, we trace up the
|
||||
// immediate dominators of a predecessor until we find a basic block that
|
||||
// dominates the exit block.
|
||||
//
|
||||
BasicBlock *Dom = PredBlocks[0]; // Some random predecessor.
|
||||
|
||||
// Find a reachable pred.
|
||||
for (unsigned i = 1; !DS.isReachable(Dom); ++i) {
|
||||
assert(i != PredBlocks.size() && "Didn't find reachable pred!");
|
||||
Dom = PredBlocks[i];
|
||||
}
|
||||
assert(NewBBIDom && "No immediate dominator found??");
|
||||
|
||||
|
||||
while (!NewBBDomSet.count(Dom)) { // Loop until we find a dominator.
|
||||
assert(Dom != 0 && "No shared dominator found???");
|
||||
Dom = ID->get(Dom);
|
||||
}
|
||||
|
||||
// Set the immediate dominator now...
|
||||
ID->addNewBlock(NewBB, NewBBIDom);
|
||||
ID->addNewBlock(NewBB, Dom);
|
||||
NewBBIDom = Dom; // Reuse this if calculating DominatorTree info...
|
||||
|
||||
// If NewBB strictly dominates other blocks, we need to update their idom's
|
||||
// now. The only block that need adjustment is the NewBBSucc block, whose
|
||||
@ -765,21 +805,24 @@ void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
|
||||
if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
|
||||
// If we don't have ImmediateDominator info around, calculate the idom as
|
||||
// above.
|
||||
if (!NewBBIDom) {
|
||||
unsigned i = 0;
|
||||
for (i = 0; i < PredBlocks.size(); ++i)
|
||||
if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i])) {
|
||||
NewBBIDom = PredBlocks[i];
|
||||
break;
|
||||
}
|
||||
assert(i != PredBlocks.size() && "No reachable preds?");
|
||||
for (i = i + 1; i < PredBlocks.size(); ++i) {
|
||||
if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i]))
|
||||
NewBBIDom = ETF.nearestCommonDominator(NewBBIDom, PredBlocks[i]);
|
||||
DominatorTree::Node *NewBBIDomNode;
|
||||
if (NewBBIDom) {
|
||||
NewBBIDomNode = DT->getNode(NewBBIDom);
|
||||
} else {
|
||||
// Scan all the pred blocks that were pulled out. Any individual one may
|
||||
// actually be unreachable, which would mean it doesn't have dom info.
|
||||
NewBBIDomNode = 0;
|
||||
for (unsigned i = 0; !NewBBIDomNode; ++i) {
|
||||
assert(i != PredBlocks.size() && "No reachable preds?");
|
||||
NewBBIDomNode = DT->getNode(PredBlocks[i]);
|
||||
}
|
||||
assert(NewBBIDom && "No immediate dominator found??");
|
||||
|
||||
while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
|
||||
NewBBIDomNode = NewBBIDomNode->getIDom();
|
||||
assert(NewBBIDomNode && "No shared dominator found??");
|
||||
}
|
||||
NewBBIDom = NewBBIDomNode->getBlock();
|
||||
}
|
||||
DominatorTree::Node *NewBBIDomNode = DT->getNode(NewBBIDom);
|
||||
|
||||
// Create the new dominator tree node... and set the idom of NewBB.
|
||||
DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
|
||||
@ -814,7 +857,7 @@ void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
|
||||
bool DominatesPred = false;
|
||||
for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
|
||||
PI != E; ++PI)
|
||||
if (ETF.dominates(NewBB, *PI))
|
||||
if (DS.dominates(NewBB, *PI))
|
||||
DominatesPred = true;
|
||||
if (!DominatesPred)
|
||||
Set.erase(SetI++);
|
||||
@ -842,14 +885,8 @@ void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
|
||||
for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
|
||||
BasicBlock *Pred = PredBlocks[i];
|
||||
// Get all of the dominators of the predecessor...
|
||||
// FIXME: There's probably a better way to do this...
|
||||
std::vector<BasicBlock*> PredDoms;
|
||||
for (Function::iterator I = Pred->getParent()->begin(),
|
||||
E = Pred->getParent()->end(); I != E; ++I)
|
||||
if (ETF.dominates(&(*I), Pred))
|
||||
PredDoms.push_back(I);
|
||||
|
||||
for (std::vector<BasicBlock*>::const_iterator PDI = PredDoms.begin(),
|
||||
const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
|
||||
for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
|
||||
PDE = PredDoms.end(); PDI != PDE; ++PDI) {
|
||||
BasicBlock *PredDom = *PDI;
|
||||
|
||||
@ -863,12 +900,12 @@ void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
|
||||
// We remove it unless there is a predecessor of NewBBSucc that we
|
||||
// dominate, but we don't strictly dominate NewBBSucc.
|
||||
bool ShouldRemove = true;
|
||||
if (PredDom == NewBBSucc || !ETF.dominates(PredDom, NewBBSucc)) {
|
||||
if (PredDom == NewBBSucc || !DS.dominates(PredDom, NewBBSucc)) {
|
||||
// Okay, we know that PredDom does not strictly dominate NewBBSucc.
|
||||
// Check to see if it dominates any predecessors of NewBBSucc.
|
||||
for (pred_iterator PI = pred_begin(NewBBSucc),
|
||||
E = pred_end(NewBBSucc); PI != E; ++PI)
|
||||
if (ETF.dominates(PredDom, *PI)) {
|
||||
if (DS.dominates(PredDom, *PI)) {
|
||||
ShouldRemove = false;
|
||||
break;
|
||||
}
|
||||
|
@ -251,6 +251,113 @@ void ImmediateDominatorsBase::print(std::ostream &o, const Module* ) const {
|
||||
o << "\n";
|
||||
}
|
||||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorSet Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static RegisterPass<DominatorSet>
|
||||
B("domset", "Dominator Set Construction", true);
|
||||
|
||||
// dominates - Return true if A dominates B. This performs the special checks
|
||||
// necessary if A and B are in the same basic block.
|
||||
//
|
||||
bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
|
||||
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
|
||||
if (BBA != BBB) return dominates(BBA, BBB);
|
||||
|
||||
// It is not possible to determine dominance between two PHI nodes
|
||||
// based on their ordering.
|
||||
if (isa<PHINode>(A) && isa<PHINode>(B))
|
||||
return false;
|
||||
|
||||
// Loop through the basic block until we find A or B.
|
||||
BasicBlock::iterator I = BBA->begin();
|
||||
for (; &*I != A && &*I != B; ++I) /*empty*/;
|
||||
|
||||
if(!IsPostDominators) {
|
||||
// A dominates B if it is found first in the basic block.
|
||||
return &*I == A;
|
||||
} else {
|
||||
// A post-dominates B if B is found first in the basic block.
|
||||
return &*I == B;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// runOnFunction - This method calculates the forward dominator sets for the
|
||||
// specified function.
|
||||
//
|
||||
bool DominatorSet::runOnFunction(Function &F) {
|
||||
BasicBlock *Root = &F.getEntryBlock();
|
||||
Roots.clear();
|
||||
Roots.push_back(Root);
|
||||
assert(pred_begin(Root) == pred_end(Root) &&
|
||||
"Root node has predecessors in function!");
|
||||
|
||||
ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
|
||||
Doms.clear();
|
||||
if (Roots.empty()) return false;
|
||||
|
||||
// Root nodes only dominate themselves.
|
||||
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
||||
Doms[Roots[i]].insert(Roots[i]);
|
||||
|
||||
// Loop over all of the blocks in the function, calculating dominator sets for
|
||||
// each function.
|
||||
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
||||
if (BasicBlock *IDom = ID[I]) { // Get idom if block is reachable
|
||||
DomSetType &DS = Doms[I];
|
||||
assert(DS.empty() && "Domset already filled in for this block?");
|
||||
DS.insert(I); // Blocks always dominate themselves
|
||||
|
||||
// Insert all dominators into the set...
|
||||
while (IDom) {
|
||||
// If we have already computed the dominator sets for our immediate
|
||||
// dominator, just use it instead of walking all the way up to the root.
|
||||
DomSetType &IDS = Doms[IDom];
|
||||
if (!IDS.empty()) {
|
||||
DS.insert(IDS.begin(), IDS.end());
|
||||
break;
|
||||
} else {
|
||||
DS.insert(IDom);
|
||||
IDom = ID[IDom];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Ensure that every basic block has at least an empty set of nodes. This
|
||||
// is important for the case when there is unreachable blocks.
|
||||
Doms[I];
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
namespace llvm {
|
||||
static std::ostream &operator<<(std::ostream &o,
|
||||
const std::set<BasicBlock*> &BBs) {
|
||||
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
|
||||
I != E; ++I)
|
||||
if (*I)
|
||||
WriteAsOperand(o, *I, false);
|
||||
else
|
||||
o << " <<exit node>>";
|
||||
return o;
|
||||
}
|
||||
}
|
||||
|
||||
void DominatorSetBase::print(std::ostream &o, const Module* ) const {
|
||||
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
||||
o << " DomSet For BB: ";
|
||||
if (I->first)
|
||||
WriteAsOperand(o, I->first, false);
|
||||
else
|
||||
o << " <<exit node>>";
|
||||
o << " is:\t" << I->second << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorTree Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
@ -421,20 +528,6 @@ DominanceFrontier::calculate(const DominatorTree &DT,
|
||||
return *Result;
|
||||
}
|
||||
|
||||
namespace llvm {
|
||||
static std::ostream &operator<<(std::ostream &o,
|
||||
const std::set<BasicBlock*> &BBs) {
|
||||
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
|
||||
I != E; ++I)
|
||||
if (*I)
|
||||
WriteAsOperand(o, *I, false);
|
||||
else
|
||||
o << " <<exit node>>";
|
||||
return o;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
|
||||
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
||||
o << " DomFrontier for BB";
|
||||
@ -978,3 +1071,5 @@ void ETForestBase::print(std::ostream &o, const Module *) const {
|
||||
}
|
||||
o << "\n";
|
||||
}
|
||||
|
||||
DEFINING_FILE_FOR(DominatorSet)
|
||||
|
Loading…
Reference in New Issue
Block a user