When linearizing a multiplication, return at once if we see a factor of zero,

since then the entire expression must equal zero (similarly for other operations
with an absorbing element).  With this in place a bunch of reassociate code for
handling constants is dead since it is all taken care of when linearizing.  No
intended functionality change.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158398 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Duncan Sands 2012-06-13 09:42:13 +00:00
parent cc95b57d42
commit ee5a094ccf
3 changed files with 44 additions and 43 deletions

View File

@ -919,9 +919,15 @@ public:
/// getBinOpIdentity - Return the identity for the given binary operation,
/// i.e. a constant C such that X op C = X and C op X = X for every X. It
/// is an error to call this for an operation that doesn't have an identity.
/// returns null if the operator doesn't have an identity.
static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
/// getBinOpAbsorber - Return the absorbing element for the given binary
/// operation, i.e. a constant C such that X op C = C and C op X = C for
/// every X. For example, this returns zero for integer multiplication.
/// It returns null if the operator doesn't have an absorbing element.
static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);

View File

@ -455,6 +455,10 @@ static bool LinearizeExprTree(BinaryOperator *I,
assert(Instruction::isAssociative(Opcode) &&
Instruction::isCommutative(Opcode) &&
"Expected an associative and commutative operation!");
// If we see an absorbing element then the entire expression must be equal to
// it. For example, if this is a multiplication expression and zero occurs as
// an operand somewhere in it then the result of the expression must be zero.
Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
// Visit all operands of the expression, keeping track of their weight (the
// number of paths from the expression root to the operand, or if you like
@ -502,6 +506,13 @@ static bool LinearizeExprTree(BinaryOperator *I,
DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
assert(!Op->use_empty() && "No uses, so how did we get to it?!");
// If the expression contains an absorbing element then there is no need
// to analyze it further: it must evaluate to the absorbing element.
if (Op == Absorber && !Weight.isMinValue()) {
Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
return MadeChange;
}
// If this is a binary operation of the right kind with only one use then
// add its operands to the expression.
if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
@ -617,14 +628,15 @@ static bool LinearizeExprTree(BinaryOperator *I,
// Add any constants back into Ops, all globbed together and reduced to having
// weight 1 for the convenience of users.
if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
if (Cst && Cst != Identity)
Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
// For nilpotent operations or addition there may be no operands, for example
// because the expression was "X xor X" or consisted of 2^Bitwidth additions:
// in both cases the weight reduces to 0 causing the value to be skipped.
if (Ops.empty()) {
Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
assert(Identity && "Associative operation without identity!");
Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
}
@ -1426,44 +1438,6 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
unsigned Opcode = I->getOpcode();
if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
Ops.pop_back();
Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
return OptimizeExpression(I, Ops);
}
// Check for destructive annihilation due to a constant being used.
if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
switch (Opcode) {
default: break;
case Instruction::And:
if (CstVal->isZero()) // X & 0 -> 0
return CstVal;
if (CstVal->isAllOnesValue()) // X & -1 -> X
Ops.pop_back();
break;
case Instruction::Mul:
if (CstVal->isZero()) { // X * 0 -> 0
++NumAnnihil;
return CstVal;
}
if (cast<ConstantInt>(CstVal)->isOne())
Ops.pop_back(); // X * 1 -> X
break;
case Instruction::Or:
if (CstVal->isAllOnesValue()) // X | -1 -> -1
return CstVal;
// FALLTHROUGH!
case Instruction::Add:
case Instruction::Xor:
if (CstVal->isZero()) // X [|^+] 0 -> X
Ops.pop_back();
break;
}
if (Ops.size() == 1) return Ops[0].Op;
// Handle destructive annihilation due to identities between elements in the
// argument list here.
unsigned NumOps = Ops.size();

View File

@ -2009,11 +2009,13 @@ Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
/// getBinOpIdentity - Return the identity for the given binary operation,
/// i.e. a constant C such that X op C = X and C op X = X for every X. It
/// is an error to call this for an operation that doesn't have an identity.
/// returns null if the operator doesn't have an identity.
Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
switch (Opcode) {
default:
llvm_unreachable("Not a binary operation with identity");
// Doesn't have an identity.
return 0;
case Instruction::Add:
case Instruction::Or:
case Instruction::Xor:
@ -2027,6 +2029,25 @@ Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
}
}
/// getBinOpAbsorber - Return the absorbing element for the given binary
/// operation, i.e. a constant C such that X op C = C and C op X = C for
/// every X. For example, this returns zero for integer multiplication.
/// It returns null if the operator doesn't have an absorbing element.
Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
switch (Opcode) {
default:
// Doesn't have an absorber.
return 0;
case Instruction::Or:
return Constant::getAllOnesValue(Ty);
case Instruction::And:
case Instruction::Mul:
return Constant::getNullValue(Ty);
}
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {