Fix PR1850 by removing an unsafe transformation from VMCore/ConstantFold.cpp.

Reimplement the xform in Analysis/ConstantFolding.cpp where we can use
targetdata to validate that it is safe.  While I'm in there, fix some const
correctness issues and generalize the interface to the "operand folder".


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44817 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner
2007-12-10 22:53:04 +00:00
parent 9324665a78
commit f286f6fd93
7 changed files with 134 additions and 43 deletions

View File

@ -55,7 +55,8 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Cannot compute this if the element type of the pointer is missing size
// info.
if (!cast<PointerType>(CE->getOperand(0)->getType())->getElementType()->isSized())
if (!cast<PointerType>(CE->getOperand(0)->getType())
->getElementType()->isSized())
return false;
// If the base isn't a global+constant, we aren't either.
@ -117,7 +118,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Constant** Ops, unsigned NumOps,
static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
const Type *ResultTy,
const TargetData *TD) {
Constant *Ptr = Ops[0];
@ -181,7 +182,12 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
else
return 0; // All operands not constant!
return ConstantFoldInstOperands(I, &Ops[0], Ops.size(), TD);
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(),
&Ops[0], Ops.size(), TD);
else
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
&Ops[0], Ops.size(), TD);
}
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
@ -190,23 +196,19 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
///
Constant *llvm::ConstantFoldInstOperands(const Instruction* I,
Constant** Ops, unsigned NumOps,
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant* const* Ops, unsigned NumOps,
const TargetData *TD) {
unsigned Opc = I->getOpcode();
const Type *DestTy = I->getType();
// Handle easy binops first.
if (isa<BinaryOperator>(I)) {
if (Instruction::isBinaryOp(Opcode)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
if (Constant *C = SymbolicallyEvaluateBinop(I->getOpcode(), Ops[0],
Ops[1], TD))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
return C;
return ConstantExpr::get(Opc, Ops[0], Ops[1]);
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
}
switch (Opc) {
switch (Opcode) {
default: return 0;
case Instruction::Call:
if (Function *F = dyn_cast<Function>(Ops[0]))
@ -215,8 +217,7 @@ Constant *llvm::ConstantFoldInstOperands(const Instruction* I,
return 0;
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(cast<CmpInst>(I)->getPredicate(), Ops[0],
Ops[1]);
assert(0 &&"This function is invalid for compares: no predicate specified");
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
@ -229,7 +230,7 @@ Constant *llvm::ConstantFoldInstOperands(const Instruction* I,
TD->getPointerSizeInBits()));
Input = ConstantExpr::getAnd(Input, Mask);
// Do a zext or trunc to get to the dest size.
return ConstantExpr::getIntegerCast(Input, I->getType(), false);
return ConstantExpr::getIntegerCast(Input, DestTy, false);
}
}
// FALL THROUGH.
@ -244,7 +245,7 @@ Constant *llvm::ConstantFoldInstOperands(const Instruction* I,
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::BitCast:
return ConstantExpr::getCast(Opc, Ops[0], DestTy);
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
@ -254,13 +255,73 @@ Constant *llvm::ConstantFoldInstOperands(const Instruction* I,
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, I->getType(), TD))
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
return C;
return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
}
}
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
/// instruction (icmp/fcmp) with the specified operands. If it fails, it
/// returns a constant expression of the specified operands.
///
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant*const * Ops,
unsigned NumOps,
const TargetData *TD) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp (ptrtoint x), 0 -> icmp x, null
// fold: icmp (inttoptr x), (inttoptr y) -> icmp x, y
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
//
// ConstantExpr::getCompare cannot do this, because it doesn't have TD
// around to know if bit truncation is happening.
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
if (TD && Ops[1]->isNullValue()) {
const Type *IntPtrTy = TD->getIntPtrType();
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
// FIXME!
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
}
}
if (TD && isa<ConstantExpr>(Ops[1]) &&
cast<ConstantExpr>(Ops[1])->getOpcode() == CE0->getOpcode()) {
const Type *IntPtrTy = TD->getIntPtrType();
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if ((CE0->getOpcode() == Instruction::IntToPtr &&
CE0->getOperand(0)->getType() == IntPtrTy &&
CE0->getOperand(1)->getType() == IntPtrTy) ||
(CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE0->getOperand(1)->getType())) {
Constant *NewOps[] = {
CE0->getOperand(0), cast<ConstantExpr>(Ops[1])->getOperand(0)
};
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
}
}
}
return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
}
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
@ -438,7 +499,8 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
/// with the specified arguments, returning null if unsuccessful.
Constant *
llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
llvm::ConstantFoldCall(Function *F,
Constant* const* Operands, unsigned NumOperands) {
const ValueName *NameVal = F->getValueName();
if (NameVal == 0) return 0;
const char *Str = NameVal->getKeyData();