Cleanup. Refactor out the applying of value ranges to its own method.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35719 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nick Lewycky 2007-04-07 03:36:51 +00:00
parent b01c77e137
commit f3a9e368f6

View File

@ -461,7 +461,6 @@ namespace {
ToRepoint.push_back(V);
if (unsigned Conflict = getNode(V, Subtree)) {
// XXX: NodeMap.size() exceeds 68,000 entries compiling kimwitu++!
for (NodeMapType::iterator I = NodeMap.begin(), E = NodeMap.end();
I != E; ++I) {
if (I->index == Conflict && Subtree->DominatedBy(I->Subtree))
@ -512,15 +511,17 @@ namespace {
// Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
// add %a < %n2 too. This keeps the graph fully connected.
if (LV1 != NE) {
// Someone with a head for this sort of logic, please review this.
// Given that %x SLTUGT %y and %a SLE %x, what is the relationship
// between %a and %y? I believe the below code is correct, but I don't
// think it's the most efficient solution.
// Break up the relationship into signed and unsigned comparison parts.
// If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
// op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
// should have the EQ_BIT iff it's set for both op1 and op2.
unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
for (Node::iterator I = N1->begin(), E = N1->end(); I != E; ++I) {
if (I->LV != NE && I->To != n2) {
ETNode *Local_Subtree = NULL;
if (Subtree->DominatedBy(I->Subtree))
Local_Subtree = Subtree;
@ -535,7 +536,6 @@ namespace {
if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
new_relationship |= ILV_s;
if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
new_relationship |= ILV_u;
@ -719,10 +719,9 @@ namespace {
// Also, we have to tighten any edge that Subtree dominates.
for (iterator B = begin(); I->V == V; --I) {
if (I->Subtree->DominatedBy(Subtree)) {
CR = CR.intersectWith(I->CR);
assert(!CR.isEmptySet() &&
I->CR = CR.intersectWith(I->CR);
assert(!I->CR.isEmptySet() &&
"Empty intersection of ConstantRanges!");
I->CR = CR;
}
if (I == B) break;
}
@ -906,7 +905,7 @@ namespace {
}
}
void addToWorklist(Value *V, const APInt *I, ICmpInst::Predicate Pred,
void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred,
VRPSolver *VRP);
void mergeInto(Value **I, unsigned n, Value *New, ETNode *Subtree,
@ -927,11 +926,27 @@ namespace {
if (Merged.isFullSet() || Merged == CR_New) return;
if (Merged.isSingleElement())
addToWorklist(New, Merged.getSingleElement(),
applyRange(New, Merged, Subtree, VRP);
}
void applyRange(Value *V, const ConstantRange &CR, ETNode *Subtree,
VRPSolver *VRP) {
assert(isCanonical(V, Subtree, VRP) && "Value not canonical.");
if (const APInt *I = CR.getSingleElement()) {
const Type *Ty = V->getType();
if (Ty->isInteger()) {
addToWorklist(V, ConstantInt::get(*I), ICmpInst::ICMP_EQ, VRP);
return;
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
assert(*I == 0 && "Pointer is null but not zero?");
addToWorklist(V, ConstantPointerNull::get(PTy),
ICmpInst::ICMP_EQ, VRP);
else
update(New, Merged, Subtree);
return;
}
}
update(V, CR, Subtree);
}
void addInequality(Value *V1, Value *V2, ETNode *Subtree, LatticeVal LV,
@ -953,25 +968,15 @@ namespace {
if (!CR1.isSingleElement()) {
ConstantRange NewCR1 = CR1.intersectWith(create(LV, CR2));
if (NewCR1 != CR1) {
if (NewCR1.isSingleElement())
addToWorklist(V1, NewCR1.getSingleElement(),
ICmpInst::ICMP_EQ, VRP);
else
update(V1, NewCR1, Subtree);
}
if (NewCR1 != CR1)
applyRange(V1, NewCR1, Subtree, VRP);
}
if (!CR2.isSingleElement()) {
ConstantRange NewCR2 = CR2.intersectWith(create(reversePredicate(LV),
CR1));
if (NewCR2 != CR2) {
if (NewCR2.isSingleElement())
addToWorklist(V2, NewCR2.getSingleElement(),
ICmpInst::ICMP_EQ, VRP);
else
update(V2, NewCR2, Subtree);
}
if (NewCR2 != CR2)
applyRange(V2, NewCR2, Subtree, VRP);
}
}
};
@ -1847,9 +1852,9 @@ namespace {
}
};
void ValueRanges::addToWorklist(Value *V, const APInt *I,
void ValueRanges::addToWorklist(Value *V, Constant *C,
ICmpInst::Predicate Pred, VRPSolver *VRP) {
VRP->add(V, ConstantInt::get(*I), Pred, VRP->TopInst);
VRP->add(V, C, Pred, VRP->TopInst);
}
#ifndef NDEBUG