Remove the notion of primitive types.

They were out of place since the introduction of arbitrary precision integer
types.

This also synchronizes the documentation to Types.h, so it refers to first class
types and single value types.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196661 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Rafael Espindola 2013-12-07 19:34:20 +00:00
parent dfe327f749
commit f7f74c22b1
5 changed files with 169 additions and 233 deletions

View File

@ -4,7 +4,7 @@ LLVM Language Reference Manual
.. contents::
:local:
:depth: 3
:depth: 4
Abstract
========
@ -1476,80 +1476,94 @@ transformation. A strong type system makes it easier to read the
generated code and enables novel analyses and transformations that are
not feasible to perform on normal three address code representations.
.. _typeclassifications:
.. _t_void:
Type Classifications
--------------------
Void Type
---------
The types fall into a few useful classifications:
Overview:
^^^^^^^^^
The void type does not represent any value and has no size.
Syntax:
^^^^^^^
::
void
.. list-table::
:header-rows: 1
.. _t_function:
* - Classification
- Types
Function Type
-------------
* - :ref:`integer <t_integer>`
- ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
``i64``, ...
Overview:
^^^^^^^^^
* - :ref:`floating point <t_floating>`
- ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
``ppc_fp128``
The function type can be thought of as a function signature. It consists of a
return type and a list of formal parameter types. The return type of a function
type is a void type or first class type --- except for :ref:`label <t_label>`
and :ref:`metadata <t_metadata>` types.
Syntax:
^^^^^^^
* - first class
::
<returntype> (<parameter list>)
...where '``<parameter list>``' is a comma-separated list of type
specifiers. Optionally, the parameter list may include a type ``...``, which
indicates that the function takes a variable number of arguments. Variable
argument functions can access their arguments with the :ref:`variable argument
handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Examples:
^^^^^^^^^
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
.. _t_firstclass:
- :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
:ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
:ref:`structure <t_struct>`, :ref:`array <t_array>`,
:ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
* - :ref:`primitive <t_primitive>`
- :ref:`label <t_label>`,
:ref:`void <t_void>`,
:ref:`integer <t_integer>`,
:ref:`floating point <t_floating>`,
:ref:`x86mmx <t_x86mmx>`,
:ref:`metadata <t_metadata>`.
* - :ref:`derived <t_derived>`
- :ref:`array <t_array>`,
:ref:`function <t_function>`,
:ref:`pointer <t_pointer>`,
:ref:`structure <t_struct>`,
:ref:`vector <t_vector>`,
:ref:`opaque <t_opaque>`.
First Class Types
-----------------
The :ref:`first class <t_firstclass>` types are perhaps the most important.
Values of these types are the only ones which can be produced by
instructions.
.. _t_primitive:
.. _t_single_value:
Primitive Types
---------------
Single Value Types
^^^^^^^^^^^^^^^^^^
The primitive types are the fundamental building blocks of the LLVM
system.
These are the types that are valid in registers from CodeGen's perspective.
.. _t_integer:
Integer Type
^^^^^^^^^^^^
""""""""""""
Overview:
"""""""""
*********
The integer type is a very simple type that simply specifies an
arbitrary bit width for the integer type desired. Any bit width from 1
bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
Syntax:
"""""""
*******
::
@ -1559,7 +1573,7 @@ The number of bits the integer will occupy is specified by the ``N``
value.
Examples:
"""""""""
*********
+----------------+------------------------------------------------+
| ``i1`` | a single-bit integer. |
@ -1572,7 +1586,7 @@ Examples:
.. _t_floating:
Floating Point Types
^^^^^^^^^^^^^^^^^^^^
""""""""""""""""""""
.. list-table::
:header-rows: 1
@ -1601,10 +1615,10 @@ Floating Point Types
.. _t_x86mmx:
X86mmx Type
^^^^^^^^^^^
"""""""""""
Overview:
"""""""""
*********
The x86mmx type represents a value held in an MMX register on an x86
machine. The operations allowed on it are quite limited: parameters and
@ -1614,28 +1628,87 @@ and/or results of this type. There are no arrays, vectors or constants
of this type.
Syntax:
"""""""
*******
::
x86mmx
.. _t_void:
Void Type
^^^^^^^^^
.. _t_pointer:
Pointer Type
""""""""""""
Overview:
"""""""""
*********
The void type does not represent any value and has no size.
The pointer type is used to specify memory locations. Pointers are
commonly used to reference objects in memory.
Pointer types may have an optional address space attribute defining the
numbered address space where the pointed-to object resides. The default
address space is number zero. The semantics of non-zero address spaces
are target-specific.
Note that LLVM does not permit pointers to void (``void*``) nor does it
permit pointers to labels (``label*``). Use ``i8*`` instead.
Syntax:
"""""""
*******
::
void
<type> *
Examples:
*********
+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
+-------------------------+--------------------------------------------------------------------------------------------------------------+
.. _t_vector:
Vector Type
"""""""""""
Overview:
*********
A vector type is a simple derived type that represents a vector of
elements. Vector types are used when multiple primitive data are
operated in parallel using a single instruction (SIMD). A vector type
requires a size (number of elements) and an underlying primitive data
type. Vector types are considered :ref:`first class <t_firstclass>`.
Syntax:
*******
::
< <# elements> x <elementtype> >
The number of elements is a constant integer value larger than 0;
elementtype may be any integer or floating point type, or a pointer to
these types. Vectors of size zero are not allowed.
Examples:
*********
+-------------------+--------------------------------------------------+
| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
+-------------------+--------------------------------------------------+
| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
+-------------------+--------------------------------------------------+
| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
+-------------------+--------------------------------------------------+
| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
+-------------------+--------------------------------------------------+
.. _t_label:
@ -1672,18 +1745,6 @@ Syntax:
metadata
.. _t_derived:
Derived Types
-------------
The real power in LLVM comes from the derived types in the system. This
is what allows a programmer to represent arrays, functions, pointers,
and other useful types. Each of these types contain one or more element
types which may be a primitive type, or another derived type. For
example, it is possible to have a two dimensional array, using an array
as the element type of another array.
.. _t_aggregate:
Aggregate Types
@ -1697,17 +1758,17 @@ aggregate types.
.. _t_array:
Array Type
^^^^^^^^^^
""""""""""
Overview:
"""""""""
*********
The array type is a very simple derived type that arranges elements
sequentially in memory. The array type requires a size (number of
elements) and an underlying data type.
Syntax:
"""""""
*******
::
@ -1717,7 +1778,7 @@ The number of elements is a constant integer value; ``elementtype`` may
be any type with a size.
Examples:
"""""""""
*********
+------------------+--------------------------------------+
| ``[40 x i32]`` | Array of 40 32-bit integer values. |
@ -1745,53 +1806,13 @@ LLVM with a zero length array type. An implementation of 'pascal style
arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
example.
.. _t_function:
Function Type
^^^^^^^^^^^^^
Overview:
"""""""""
The function type can be thought of as a function signature. It consists of a
return type and a list of formal parameter types. The return type of a function
type is a void type or first class type --- except for :ref:`label <t_label>`
and :ref:`metadata <t_metadata>` types.
Syntax:
"""""""
::
<returntype> (<parameter list>)
...where '``<parameter list>``' is a comma-separated list of type
specifiers. Optionally, the parameter list may include a type ``...``, which
indicates that the function takes a variable number of arguments. Variable
argument functions can access their arguments with the :ref:`variable argument
handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Examples:
"""""""""
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
.. _t_struct:
Structure Type
^^^^^^^^^^^^^^
""""""""""""""
Overview:
"""""""""
*********
The structure type is used to represent a collection of data members
together in memory. The elements of a structure may be any type that has
@ -1816,7 +1837,7 @@ or opaque since there is no way to write one. Identified types can be
recursive, can be opaqued, and are never uniqued.
Syntax:
"""""""
*******
::
@ -1824,7 +1845,7 @@ Syntax:
%T2 = type <{ <type list> }> ; Identified packed struct type
Examples:
"""""""""
*********
+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
@ -1837,17 +1858,17 @@ Examples:
.. _t_opaque:
Opaque Structure Types
^^^^^^^^^^^^^^^^^^^^^^
""""""""""""""""""""""
Overview:
"""""""""
*********
Opaque structure types are used to represent named structure types that
do not have a body specified. This corresponds (for example) to the C
notion of a forward declared structure.
Syntax:
"""""""
*******
::
@ -1855,87 +1876,12 @@ Syntax:
%52 = type opaque
Examples:
"""""""""
*********
+--------------+-------------------+
| ``opaque`` | An opaque type. |
+--------------+-------------------+
.. _t_pointer:
Pointer Type
^^^^^^^^^^^^
Overview:
"""""""""
The pointer type is used to specify memory locations. Pointers are
commonly used to reference objects in memory.
Pointer types may have an optional address space attribute defining the
numbered address space where the pointed-to object resides. The default
address space is number zero. The semantics of non-zero address spaces
are target-specific.
Note that LLVM does not permit pointers to void (``void*``) nor does it
permit pointers to labels (``label*``). Use ``i8*`` instead.
Syntax:
"""""""
::
<type> *
Examples:
"""""""""
+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
+-------------------------+--------------------------------------------------------------------------------------------------------------+
.. _t_vector:
Vector Type
^^^^^^^^^^^
Overview:
"""""""""
A vector type is a simple derived type that represents a vector of
elements. Vector types are used when multiple primitive data are
operated in parallel using a single instruction (SIMD). A vector type
requires a size (number of elements) and an underlying primitive data
type. Vector types are considered :ref:`first class <t_firstclass>`.
Syntax:
"""""""
::
< <# elements> x <elementtype> >
The number of elements is a constant integer value larger than 0;
elementtype may be any integer or floating point type, or a pointer to
these types. Vectors of size zero are not allowed.
Examples:
"""""""""
+-------------------+--------------------------------------------------+
| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
+-------------------+--------------------------------------------------+
| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
+-------------------+--------------------------------------------------+
| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
+-------------------+--------------------------------------------------+
| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
+-------------------+--------------------------------------------------+
Constants
=========

View File

@ -71,10 +71,7 @@ public:
StructTyID, ///< 12: Structures
ArrayTyID, ///< 13: Arrays
PointerTyID, ///< 14: Pointers
VectorTyID, ///< 15: SIMD 'packed' format, or other vector type
LastPrimitiveTyID = X86_MMXTyID,
FirstDerivedTyID = IntegerTyID
VectorTyID ///< 15: SIMD 'packed' format, or other vector type
};
private:
@ -239,12 +236,6 @@ public:
/// elements or all its elements are empty.
bool isEmptyTy() const;
/// Here are some useful little methods to query what type derived types are
/// Note that all other types can just compare to see if this == Type::xxxTy;
///
bool isPrimitiveType() const { return getTypeID() <= LastPrimitiveTyID; }
bool isDerivedType() const { return getTypeID() >= FirstDerivedTyID; }
/// isFirstClassType - Return true if the type is "first class", meaning it
/// is a valid type for a Value.
///
@ -257,9 +248,8 @@ public:
/// and array types.
///
bool isSingleValueType() const {
return (getTypeID() != VoidTyID && isPrimitiveType()) ||
getTypeID() == IntegerTyID || getTypeID() == PointerTyID ||
getTypeID() == VectorTyID;
return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
isPointerTy() || isVectorTy();
}
/// isAggregateType - Return true if the type is an aggregate type. This

View File

@ -361,25 +361,25 @@ void CppWriter::printEscapedString(const std::string &Str) {
}
std::string CppWriter::getCppName(Type* Ty) {
// First, handle the primitive types .. easy
if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return "Type::getVoidTy(mod->getContext())";
default:
break;
case Type::VoidTyID:
return "Type::getVoidTy(mod->getContext())";
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
}
case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
case Type::FloatTyID: return "Type::getFloatTy(mod->getContext())";
case Type::DoubleTyID: return "Type::getDoubleTy(mod->getContext())";
case Type::LabelTyID: return "Type::getLabelTy(mod->getContext())";
case Type::X86_MMXTyID: return "Type::getX86_MMXTy(mod->getContext())";
default:
error("Invalid primitive type");
break;
}
// shouldn't be returned, but make it sensible
return "Type::getVoidTy(mod->getContext())";
case Type::X86_FP80TyID:
return "Type::getX86_FP80Ty(mod->getContext())";
case Type::FloatTyID:
return "Type::getFloatTy(mod->getContext())";
case Type::DoubleTyID:
return "Type::getDoubleTy(mod->getContext())";
case Type::LabelTyID:
return "Type::getLabelTy(mod->getContext())";
case Type::X86_MMXTyID:
return "Type::getX86_MMXTy(mod->getContext())";
}
// Now, see if we've seen the type before and return that
@ -537,7 +537,8 @@ void CppWriter::printAttributes(const AttributeSet &PAL,
void CppWriter::printType(Type* Ty) {
// We don't print definitions for primitive types
if (Ty->isPrimitiveType() || Ty->isIntegerTy())
if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy())
return;
// If we already defined this type, we don't need to define it again.

View File

@ -430,7 +430,7 @@ void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
O << " (";
if (isABI) {
if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
if (Ty->isFloatingPointTy() || Ty->isIntegerTy()) {
unsigned size = 0;
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
size = ITy->getBitWidth();
@ -1207,7 +1207,7 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
else
O << " .align " << GVar->getAlignment();
if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
if (ETy->isSingleValueType()) {
O << " .";
// Special case: ABI requires that we use .u8 for predicates
if (ETy->isIntegerTy(1))
@ -1378,7 +1378,7 @@ void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
else
O << " .align " << GVar->getAlignment();
if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
if (ETy->isSingleValueType()) {
O << " .";
O << getPTXFundamentalTypeStr(ETy);
O << " ";
@ -1410,7 +1410,7 @@ void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
}
static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) {
if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty))
if (Ty->isSingleValueType())
return TD->getPrefTypeAlignment(Ty);
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);

View File

@ -361,7 +361,7 @@ NVPTXTargetLowering::getPrototype(Type *retTy, const ArgListTy &Args,
O << "()";
} else {
O << "(";
if (retTy->isPrimitiveType() || retTy->isIntegerTy()) {
if (retTy->isFloatingPointTy() || retTy->isIntegerTy()) {
unsigned size = 0;
if (const IntegerType *ITy = dyn_cast<IntegerType>(retTy)) {
size = ITy->getBitWidth();
@ -856,8 +856,7 @@ SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// .param .align 16 .b8 retval0[<size-in-bytes>], or
// .param .b<size-in-bits> retval0
unsigned resultsz = TD->getTypeAllocSizeInBits(retTy);
if (retTy->isPrimitiveType() || retTy->isIntegerTy() ||
retTy->isPointerTy()) {
if (retTy->isSingleValueType()) {
// Scalar needs to be at least 32bit wide
if (resultsz < 32)
resultsz = 32;